Alle öffentlichen Logbücher
Dies ist die kombinierte Anzeige aller in SDQ-Wiki geführten Logbücher. Die Ausgabe kann durch die Auswahl des Logbuchtyps, des Benutzers oder des Seitentitels eingeschränkt werden (Groß-/Kleinschreibung muss beachtet werden).
- 09:15, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge erstellte die Seite Enhancing Trust in Neuro-Symbolic Explanations via Calibrated Linguistic Uncertainty (Die Seite wurde neu angelegt: „{{Ausschreibung |bearbeitet=Nein |abschlussarbeitstyp=Masterarbeit |betreuer=Nicolas Schuler, Vincenzo Scotti |gruppe=SASIS |pdf=Master Thesis Formalizing and Verifying LLM Based Abductive Reasoning for System Explanations-1.pdf }} Critical AI decision-making demands formally trustworthy explanations. Current neuro-symbolic pipelines use Multimodal Language Models (MLMs) to translate visual data into logic, but often discard valuable uncertainty by forcin…“)
- 09:15, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge lud Datei:Master Thesis Formalizing and Verifying LLM Based Abductive Reasoning for System Explanations-1.pdf hoch (Critical AI decision-making demands formally trustworthy explanations. Current neuro- symbolic pipelines use Multimodal Language Models (MLMs) to translate visual data into logic, but often discard valuable uncertainty by forcing binary decisions. While MLMs natu- rally express confidence through linguistic markers (e.g., ”likely”), these cues remain uncali- brated and unused in reasoning. This thesis aims to bridge this gap by extracting, calibrating, and propagating linguistic uncertainty int…)
- 09:15, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge erstellte die Seite Datei:Master Thesis Formalizing and Verifying LLM Based Abductive Reasoning for System Explanations-1.pdf (Critical AI decision-making demands formally trustworthy explanations. Current neuro- symbolic pipelines use Multimodal Language Models (MLMs) to translate visual data into logic, but often discard valuable uncertainty by forcing binary decisions. While MLMs natu- rally express confidence through linguistic markers (e.g., ”likely”), these cues remain uncali- brated and unused in reasoning. This thesis aims to bridge this gap by extracting, calibrating, and propagating linguistic uncertainty int…)
- 09:10, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge erstellte die Seite Towards a Minimal Abductive Reasoning Layer for SASIS (Die Seite wurde neu angelegt: „{{Ausschreibung |bearbeitet=Nein |abschlussarbeitstyp=Bachelorarbeit |betreuer=Nicolas Schuler, Vincenzo Scotti |gruppe=SASIS |pdf=Bachelor Thesis Towards a Minimal Abductive Reasoning Layer for SASIS.pdf }} Abductive reasoning – inferring the most plausible cause from observed effects – is a pow- erful paradigm for tasks like fault diagnosis and explanation generation. However, classical logic programming tools like Prolog are cumbersome to integra…“)
- 09:08, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge lud Datei:Bachelor Thesis Towards a Minimal Abductive Reasoning Layer for SASIS.pdf hoch (Abductive reasoning – inferring the most plausible cause from observed effects – is a pow- erful paradigm for tasks like fault diagnosis and explanation generation. However, classical logic programming tools like Prolog are cumbersome to integrate into modern software sys- tems, and expertise in these tools is increasingly rare. This thesis explores whether a mini- mal, modular abductive reasoning layer can be designed that integrates easily with existing software engineering frameworks and met…)
- 09:08, 1. Dez. 2025 Nicolas Sebastian Schuler Diskussion Beiträge erstellte die Seite Datei:Bachelor Thesis Towards a Minimal Abductive Reasoning Layer for SASIS.pdf (Abductive reasoning – inferring the most plausible cause from observed effects – is a pow- erful paradigm for tasks like fault diagnosis and explanation generation. However, classical logic programming tools like Prolog are cumbersome to integrate into modern software sys- tems, and expertise in these tools is increasingly rare. This thesis explores whether a mini- mal, modular abductive reasoning layer can be designed that integrates easily with existing software engineering frameworks and met…)
- 14:09, 23. Sep. 2025 Nicolas Sebastian Schuler Diskussion Beiträge erstellte die Seite Lecture Engineering Self-Adaptive Systems WS 2025/26 ((feat) add content for lecture)
- 09:09, 1. Sep. 2025 Benutzerkonto Nicolas Sebastian Schuler Diskussion Beiträge wurde automatisch erstellt