Quantitativer Vergleich von Metriken für mehrdimensionale Abhängigkeiten

Aus SDQ-Institutsseminar
Vortragende(r) Hendrik Braun
Vortragstyp Bachelorarbeit
Betreuer(in) Michael Vollmer
Termin Fr 20. Oktober 2017
Vortragssprache
Vortragsmodus
Kurzfassung In der datengetriebenen Forschung ist das Analysieren hochdimensionaler Daten von zentraler Bedeutung. Hierbei ist es nicht immer ausreichend lediglich Abhängigkeiten zwischen Paaren von Attributen zu erkennen. Häufig sind hier Abhängigkeiten zwischen mehreren Attributen vorhanden, welche sich zwischen den zweidimensionalen Paaren nicht feststellen lassen. Zur Erkennung monotoner Zusammenhänge zwischen beliebig vielen Dimensionen existiert bereits eine mehrdimensionale Erweiterung des Spearman Rangkorrelationskoeffizienten, für beliebige Abhängigkeiten existiert jedoch kein solches erprobtes Maß. Hier setzt diese Arbeit an und vergleicht die beiden multivariaten informationstheoretischen Metriken "allgemeine Redundanz" und "Interaktionsinformation" miteinander. Als Basislinie für diesen Vergleich dienen die Spearman Rangkorrelation, sowie das Kontrastmaß von HiCS.