Eine Schnittstelle zur Vorhersage von Nutzeranfragen auf Datensätzen

Aus SDQ-Institutsseminar
Version vom 1. April 2019, 11:03 Uhr von Alexander Wachtel (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Robin Maisch
Vortragstyp Bachelorarbeit
Betreuer(in) Alexander Wachtel
Termin Fr 12. April 2019
Vortragssprache
Vortragsmodus
Kurzfassung Diese Arbeit stellt eine Schnittstelle vor, die, eingebunden in ein Programm, die Aktionen eines Nutzers im Hintergrund auf dem lokalen Rechner verarbeitet und speichert, und versucht, aus den gesammelten Daten eine Vorhersage für die nächste Aktion zu ermitteln. Eine Nutzeraktion ist dabei durch die Daten eines Datensatzes definiert, die der Nutzer durch die Aktion abfragen möchte. Aus einer Reihe von Paaren (Nutzereingabe, extrahierte Daten), die automatisch über eine REST-Schnittstelle oder von Hand über eine grafische Nutzeroberfläche in das System eingespeist werden können, wird ein Modell gewonnen, das für jede Aktion alle unmittelbar nachfolgenden Aktionen als Bigramm speichert und ihre Häufigkeit zählt. Die Schnittstelle stellt eine Reihe von Vorhersagestrategien zur Verfügung. Eine davon nutzt ein künstliches neuronales Netz, das das System in die Lage versetzt, auch dann einen Aktionsvorschlag zu machen, wenn der Nutzer zuvor eine völlig unbekannte Aktion ausgeführt hat. Die Leistungsfähigkeit des neuronalen Netzes wurde an Beispieldaten getestet und evaluiert. Für die Evaluation wurden zufällig Modelle mit Aktionsfolgen generiert, die menschliches Verhalten nachahmen sollten. Bei einem stichprobenartigen Durchlauf, bei dem das Modell auf zweitausend generierte Nutzeranfragen trainiert wurde, konnte das System die Aktionen zu 54.2 Prozent replizieren, bei zweihundert Nutzeranfragen im Mittel zu 72.2 Prozent. Bei authentischem menschlichem Nutzerverhalten gibt es gute Gründe dafür, anzunehmen, dass die Vorhersage noch leistungsfähiger ist.