Evaluating Subspace Search Methods with Hidden Outlier

Aus SDQ-Institutsseminar
Version vom 11. Februar 2019, 15:38 Uhr von Edouard Fouché (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Marcel Hiltscher
Vortragstyp Bachelorarbeit
Betreuer(in) Georg Steinbuss
Termin Fr 15. Februar 2019
Vortragssprache
Vortragsmodus
Kurzfassung In today’s world, most datasets do not have only a small number of attributes. The high

number of attributes, which are referred to as dimensions, hinder the search of objects that normally not occur. For instance, consider a money transaction that has been not legally carried out. Such objects are called outlier. A common method to detect outliers in high dimensional datasets are based on the search in subspaces of the dataset. These subspaces have the characteristics to reveal possible outliers. The most common evaluation of algorithms searching for subspaces is based on benchmark datasets. However, the benchmark datasets are often not suitable for the evaluation of these subspace search algorithms. In this context, we present a method that evaluates subspace search algorithms without relying on benchmark datasets by hiding outliers in the result set of a subspace search algorithm.