Institutsseminar/2019-02-15 Zusatztermin
Datum | Freitag, 15. Februar 2019 | |
---|---|---|
Uhrzeit | 11:30 – 12:00 Uhr (Dauer: 30 min) | |
Ort | Raum 010 (Gebäude 50.34) | |
Webkonferenz | ||
Vorheriger Termin | Fr 8. Februar 2019 | |
Nächster Termin | Fr 22. Februar 2019 |
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r) | Marcel Hiltscher |
---|---|
Titel | Evaluating Subspace Search Methods with Hidden Outlier |
Vortragstyp | Bachelorarbeit |
Betreuer(in) | Georg Steinbuss |
Vortragssprache | |
Vortragsmodus | |
Kurzfassung | In today’s world, most datasets do not have only a small number of attributes. The high
number of attributes, which are referred to as dimensions, hinder the search of objects that normally not occur. For instance, consider a money transaction that has been not legally carried out. Such objects are called outlier. A common method to detect outliers in high dimensional datasets are based on the search in subspaces of the dataset. These subspaces have the characteristics to reveal possible outliers. The most common evaluation of algorithms searching for subspaces is based on benchmark datasets. However, the benchmark datasets are often not suitable for the evaluation of these subspace search algorithms. In this context, we present a method that evaluates subspace search algorithms without relying on benchmark datasets by hiding outliers in the result set of a subspace search algorithm. |
- Neuen Vortrag erstellen