Performancevorhersage für Container-Anwendungen (PdF): Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Nathan Hagel |email=nathan.hagel@student.kit.edu |vortragstyp=Vortrag |betreuer=Jörg Henß |termin=Institutsseminar/2023-09-15 |vortragsmodus=in Präsenz |kurzfassung=Kurzfassung }}“) |
Keine Bearbeitungszusammenfassung |
||
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
|vortragstyp=Vortrag | |vortragstyp=Vortrag | ||
|betreuer=Jörg Henß | |betreuer=Jörg Henß | ||
|termin= | |termin= | ||
|vortragsmodus=in Präsenz | |vortragsmodus=in Präsenz | ||
|kurzfassung= | |kurzfassung=Nowadays distributed applications are often not statically deployed on virtual machines. Instead, a desired state is defined declaratively. A control loop then tries to create the desired state in the cluster. Predicting the impact on the performance of a system using these deployment techniques is difficult. This paper introduces a method to predict the performance impact of the usage of containers and container orchestration in the deployment of a system. Our proposed approach enables system simulation and experimentation with various mechanisms of container orchestration, including autoscaling and container scheduling. We validated this approach using a micro-service reference application across different scenarios. Our findings suggest, that the simulation could effectively mimic most features of container orchestration tools, and the performance prediction of containerized applications in dynamic scenarios could be improved significantly. | ||
}} | }} |
Aktuelle Version vom 11. August 2023, 08:42 Uhr
Vortragende(r) | Nathan Hagel | |
---|---|---|
Vortragstyp | Vortrag | |
Betreuer(in) | Jörg Henß | |
Termin | [[|]] | |
Vortragssprache | ||
Vortragsmodus | in Präsenz | |
Kurzfassung | Nowadays distributed applications are often not statically deployed on virtual machines. Instead, a desired state is defined declaratively. A control loop then tries to create the desired state in the cluster. Predicting the impact on the performance of a system using these deployment techniques is difficult. This paper introduces a method to predict the performance impact of the usage of containers and container orchestration in the deployment of a system. Our proposed approach enables system simulation and experimentation with various mechanisms of container orchestration, including autoscaling and container scheduling. We validated this approach using a micro-service reference application across different scenarios. Our findings suggest, that the simulation could effectively mimic most features of container orchestration tools, and the performance prediction of containerized applications in dynamic scenarios could be improved significantly. |