Kurzfassung
|
Techniques for extracting relevant information from documents have made significant progress in recent years and became a key task in the digital transformation. With deep neural networks, it became possible to process documents without specifying hard-coded extraction rules or templates for each layout. However, such models typically have a very large number of parameters. As a result, they require many annotated samples and long training times. One solution is to create a basic pretrained model using self-supervised objectives and then to fine-tune it using a smaller document-specific annotated dataset. However, implementing and controlling the pretraining and fine-tuning procedures in a multi-modal setting is challenging. In this thesis, we propose a systematic method that consists in pretraining the model on large unlabeled data and then to fine-tune it with a virtual adversarial training procedure. For the pretraining stage, we implement an unsupervised informative masking method, which improves upon standard Masked-Language Modelling (MLM). In contrast to randomly masking tokens like in MLM, our method exploits Point-Wise Mutual Information (PMI) to calculate individual masking rates based on statistical properties of the data corpus, e.g., how often certain tokens appear together on a document page. We test our algorithm in a typical business context at SAP and report an overall improvement of 1.4% on the F1-score for extracted document entities. Additionally, we show that the implemented methods improve the training speed, robustness and data-efficiency of the algorithm.
|