Hierarchische Erklärung von Black-Box-Modellen zur Entscheidungsfindung in Sentimentanalysen

Aus SDQ-Institutsseminar
Vortragende(r) Henning Ballweber
Vortragstyp Bachelorarbeit
Betreuer(in) Clemens Müssener
Termin Fr 18. Oktober 2019
Vortragssprache
Vortragsmodus
Kurzfassung Diese Arbeit untersucht die Erklärbarkeit von Sentimentanalyse. Sentimentanalyse ist ein aktuelles Forschungsthema, das sich mit der automatisierten Auswertung der Stimmung von Texten befasst. Dabei klassifiziert ein Entscheider diese als positiv oder negativ. Jedoch sind die meisten hier angewandten Verfahren des maschinellen Lernens Black Boxes, also für Menschen nicht unmittelbar nachvollziehbar. Trotzdem ist es oftmals wünschenswert, ohne Kenntnis des zugrundeliegenden Modells eine Erklärung für die Entscheidung des Klassifikators zu liefern. Der LIME-Algorithmus ist ein gängiger Erklärer für das Problem, der jedoch nur auf Wortebene erklärt. Im Rahmen dieser Arbeit wurde ein Erklärer entwickelt, der auch die größeren Bausteine der Texthierarchie wie Sätze oder Absätze berücksichtigt. Dadurch liefert er einen höheren Informationsgehalt als LIME und er ermöglicht interaktive Erklärungen. Anwendungsfall der Untersuchung sind eine Datenbank aus Filmrezensionen sowie Klassifikatoren in Verbindung mit Word Embeddings.