GUI-basiertes Testen einer Lernplattform-Anwendung durch Nutzung von Neuroevolution
Vortragende(r) | Ulas Uyanik | |
---|---|---|
Vortragstyp | Bachelorarbeit | |
Betreuer(in) | Daniel Zimmermann | |
Termin | Fr 31. März 2023 | |
Vortragssprache | ||
Vortragsmodus | in Präsenz | |
Kurzfassung | Software-Testing ist notwendig, um die Qualität und Funktionsfähigkeit von Softwareartefakten sicherzustellen. Es gibt sowohl automatisierte als auch manuelle Testverfahren. Allerdings sind automatisierte Verfahren, sowie menschliches Testen und skriptbasiertes Testen in Bezug auf Zeitaufwand und Kosten weniger gut skalierbar. Monkey-Testing, das durch zufällige Klicks auf der Benutzeroberfläche gekennzeichnet ist, berücksichtigt die Applikationslogik oft nicht ausreichend.
Der Fokus dieser Bachelorarbeit liegt auf dem automatisierten neuroevolutionären Testverfahren, das neuronale Netze als Testagenten verwendet und sie mithilfe evolutionärer Algorithmen über mehrere Generationen hinweg verbessert. Um das Training der Agenten zu ermöglichen und den Vergleich zum Monkey-Testing zu ermöglichen, wurde eine simulierte Version der Lernplattform Anki implementiert. Zur Beurteilung der Testagenten wurde eine Belohnungsstruktur in der simulierten Anwendung entwickelt. Die Ergebnisse zeigen, dass das neuroevolutionäre Testverfahren im Vergleich zum Monkey-Testing in Bezug auf erreichte Belohnungen signifikant besser abschneidet. Dadurch wird die Applikationslogik im Testprozess besser berücksichtigt. |