Fallstudie zur Privatsphäre in Connected-Car Systemen

Aus SDQ-Institutsseminar
Vortragende(r) Fabian Palitza
Vortragstyp Bachelorarbeit
Betreuer(in) Nicolas Boltz
Termin Fr 20. Januar 2023
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung In jedem Software-System, in dem Nutzerdaten anfallen, muss deren Verarbeitung strengen Auflagen unterliegen. Das bislang strengste und am weitesten verbreitete dieser Gesetze ist die Europäische Datenschutz-Grundverordnung. Um unter dieser Verordnung Daten legal zu verarbeiten, ist es für Software-Entwickler sehr günstig, diese so früh wie möglich im Entwicklungsprozess zu berücksichtigen.

Eine Möglichkeit, um datenschutzrechtliche Verstöße zur Designzeit festzustellen, ist die Datenflussanalyse. Dabei werden dem konventionellen Software-Modell noch Eigenschaften hinzugefügt, ebenso wie den modellierten Daten. Aus dem Aufruf-Graphen kann dann ein Datenflussdiagramm erstellt werden, welches anzeigt, welche Daten von welchen Komponenten wohin fließen. Diese Arbeit beschreibt eine Fallstudie, in welcher die Datenflussanalyse in einem konkreten System untersucht wird. Zunächst werden Anforderungen aufgestellt, welche eine Fallstudie der Bereiche Mobilität und Datenschutz erfüllen muss. Der wissenschaftliche Beitrag dieser Arbeit liegt dann in diesen Anforderungen sowie der testweisen Durchführung der Fallstudie. Dabei wird ein fiktives Ride-Pooling Unternehmen modelliert. Das Modell wird mithilfe der Datenflussanalyse untersucht, und aus den Ergebnissen werden Schlüsse über die Analyse gezogen.