Entwicklung und Analyse von Auto-Encodern für intelligente Agenten zum Erlernen von Atari-Spielen

Aus SDQ-Institutsseminar
Vortragende(r) Annika Kies
Vortragstyp Bachelorarbeit
Betreuer(in) Daniel Zimmermann
Termin Fr 4. September 2020
Vortragssprache
Vortragsmodus
Kurzfassung Ein neuartiger Ansatz zum Erlernen von Computerspielen ist die Verwendung von neuronalen Netzen mit Gedächtnis (speziell CTRNNs). Die großen Datenmengen in Form roher Pixel-Daten erschweren jedoch das Training. Auto-Encoder können die diese Pixel-Daten der Spielframes soweit komprimieren, dass sie für solche Netze verfügbar werden.

Das Ziel dieser Arbeit ist es eine Auto-Encoder-Architektur zu finden, welche Atari-Frames soweit komprimiert, sodass eine möglichst verlustfreie Rekonstruktion möglich ist. Atari-Spiele können so für CTRNNs zugänglich gemacht werden. Dafür wurden zwei unterschiedliche Atari-Spiele ausgewählt, große Datensätze mit geeigneten Spielframes generiert und verschiedene Auto Encoder Architekturen evaluiert. Im Rahmen dieser Arbeit konnte gezeigt werden, dass eine ausreichende Kompression mit akzeptierbaren Qualitätsverlust möglich ist.