Elicitation and Classification of Security Requirements for Everest

Aus SDQ-Institutsseminar
Vortragende(r) Debora Marettek
Vortragstyp Masterarbeit
Betreuer(in) Sophie Corallo
Termin Fr 7. Juni 2024
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung Unvollständige und nicht überprüfte Anforderungen können zu Missverständnissen und falschen Vorstellungen führen. Gerade im Sicherheitsbereich können verletzte Anforderungen Hinweise auf potenzielle Schwachstellen sein. Um eine Software auf Schwachstellen zu prüfen, werden Sicherheitsanforderungen an ihre Implementierung geknüpft. Hierfür müssen spezifische Anforderungsattribute identifiziert und mit dem Design verknüpft werden.

In dieser Arbeit werden 93 Sicherheitsanforderungen auf Designebene für die Open-Source-Software EVerest, einer Full-Stack-Umgebung für Ladestationen, erhoben. Mithilfe von Prompt Engineering und Fine-tuning werden Designelemente mittels GPT klassifiziert und ihre jeweiligen Erwähnungen aus den erhobenen Anforderungen extrahiert. Die Ergebnisse deuten darauf hin, dass die Klassifizierung von Designelementen in Anforderungen sowohl bei Prompt Engineering als auch bei Fine-tuning gut funktioniert (F1-Score: 0,67-0,73). In Bezug auf die Extraktion von Designelementen übertrifft Fine-tuning (F1-Score: 0,7) jedoch Prompt Engineering (F1-Score: 0,52). Wenn beide Aufgaben kombiniert werden, übertrifft Fine-tuning (F1-Score: 0,87) ebenfalls Prompt Engineering (F1-Score: 0,61).