Detecting Outlying Time-Series with Global Alignment Kernels

Aus SDQ-Institutsseminar
Vortragende(r) Haiko Thiessen
Vortragstyp Proposal
Betreuer(in) Florian Kalinke
Termin Fr 11. Dezember 2020
Vortragssprache
Vortragsmodus
Kurzfassung Using outlier detection algorithms, e.g., Support Vector Data Description (SVDD), for detecting outlying time-series usually requires extracting domain-specific attributes. However, this indirect way needs expert knowledge, making SVDD impractical for many real-world use cases. Incorporating "Global Alignment Kernels" directly into SVDD to compute the distance between time-series data bypasses the attribute-extraction step and makes the application of SVDD independent of the underlying domain.

In this work, we propose a new time-series outlier detection algorithm, combining "Global Alignment Kernels" and SVDD. Its outlier detection capabilities will be evaluated on synthetic data as well as on real-world data sets. Additionally, our approach's performance will be compared to state-of-the-art methods for outlier detection, especially with regard to the types of detected outliers.