Institutsseminar/2019-01-11

Aus SDQ-Institutsseminar
Version vom 19. Juni 2018, 13:18 Uhr von Erik Burger (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2019/01/11 11:30:00 |raum=Raum 348 (Gebäude 50.34) }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 11. Januar 2019
Uhrzeit 11:30 – 12:15 Uhr (Dauer: 45 min)
Ort Raum 348 (Gebäude 50.34)
Webkonferenz
Vorheriger Termin Fr 21. Dezember 2018
Nächster Termin Fr 18. Januar 2019

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Timo Kopf
Titel Adaptives Online-Tuning für kontinuierliche Zustandsräume
Vortragstyp Masterarbeit
Betreuer(in) Philip Pfaffe
Vortragssprache
Vortragsmodus
Kurzfassung Raytracing ist ein rechenintensives Verfahren zur Erzeugung photorealistischer Bilder. Durch die automatische Optimierung von Parametern, die Einfluss auf die Rechenzeit haben, kann die Erzeugung von Bildern beschleunigt werden. Im Rahmen der vorliegenden Arbeit wurde der Auto-Tuner libtuning um ein generalisiertes Reinforcement Learning-Verfahren erweitert, das in der Lage ist, bestimmte Charakteristika der zu zeichnenden Frames bei der Auswahl geeigneter Parameterkonfigurationen zu berücksichtigen. Die hierfür eingesetzte Strategie ist eine ε-gierige Strategie, die für die Exploration das Nelder-Mead-Verfahren zur Funktionsminimierung aus libtuning verwendet. Es konnte gezeigt werden, dass ein Beschleunigung von bis zu 7,7 % in Bezug auf die gesamte Rechenzeit eines Raytracing-Anwendungsszenarios dieser Implementierung gegenüber der Verwendung von libtuning erzielt werden konnte.
Neuen Vortrag erstellen

Hinweise