Hauptseite: Unterschied zwischen den Versionen

Aus IPD-Institutsseminar
Zur Navigation springen Zur Suche springen
Zeile 3: Zeile 3:
 
{| class="wikitable"
 
{| class="wikitable"
 
! Ort
 
! Ort
| Gebäude 50.34, Seminarraum 348
+
| Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
 
|-
 
|-
 
! Zeit
 
! Zeit
| jeweils freitags, 11:30–13:00 Uhr
+
| jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr
 
|}
 
|}
  

Version vom 10. Juni 2020, 12:33 Uhr

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348 oder online, siehe Beschreibung
Zeit jeweils freitags, 11:30–13:00 Uhr / 14:00–15:30 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 14. Oktober 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Pascal Krieg
Titel Preventing Code Insertion Attacks on Token-Based Software Plagiarism Detectors
Vortragstyp Bachelorarbeit
Betreuer(in) Timur Sağlam
Vortragsmodus in Präsenz
Kurzfassung Some students tasked with mandatory programming assignments lack the time or dedication to solve the assignment themselves. Instead, they plagiarize a peer’s solution by slightly modifying the code. However, there exist numerous tools that assist in detecting these kinds of plagiarism. These tools can be used by instructors to identify plagiarized programs. The most used type of plagiarism detection tools is token-based plagiarism detectors. They are resilient against many types of obfuscation attacks, such as renaming variables or whitespace modifications. However, they are susceptible to inserting lines of code that do not affect the program flow or result.

The current working assumption was that the successful obfuscation of plagiarism takes more effort and skill than solving the assignment itself. This assumption was broken by automated plagiarism generators, which exploit this weakness. This work aims to develop mechanisms against code insertions that can be directly integrated into existing token-based plagiarism detectors. For this, we first develop mechanisms to negate the negative effect of many types of code insertion. Then we implement these mechanisms prototypically into a state-of-the-art plagiarism detector. We evaluate our implementation by running it on a dataset consisting of real student submissions and automatically generated plagiarism. We show that with our mechanisms, the similarity rating of automatically generated plagiarism increases drastically. Consequently, the plagiarism generator we use fails to create usable plagiarisms.