Efficient Training of Graph Neural Networks for Dynamic Phenomena (Proposal): Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 7: Zeile 7:
|vortragsmodus=in Präsenz
|vortragsmodus=in Präsenz
|kurzfassung=Graph Neural Networks (GNNs) have shown great potential for use cases that can be described as graphs. However, training GNNs presents unique challenges due to the characteristics of graph data. The focus of this thesis is to examine their learning abilities by developing a GNN-based surrogate model for the injection molding process from materials science. While numerical simulations can model the mold filling accurately, they are computationally expensive and require significant trial-and-error for parameter optimization.
|kurzfassung=Graph Neural Networks (GNNs) have shown great potential for use cases that can be described as graphs. However, training GNNs presents unique challenges due to the characteristics of graph data. The focus of this thesis is to examine their learning abilities by developing a GNN-based surrogate model for the injection molding process from materials science. While numerical simulations can model the mold filling accurately, they are computationally expensive and require significant trial-and-error for parameter optimization.
We propose representing the mold geometry as a static graph and constructing additional node and edge features from domain knowledge. We plan to enhance our model with a self-attention mechanism, allowing dynamic weighting of a node's neighbors based on their current states. Further improvements may come from customizing the model’s message passing function and exploring node sampling methods to reduce computational complexity. We compare our approach to conventional machine learning models w.r.t. predictive performance, generalization to arbitrary mold geometries and computational efficiency.
We propose representing the mold geometry as a static graph and constructing additional node and edge features from domain knowledge. We plan to enhance our model with a self-attention mechanism, allowing dynamic weighting of a node's neighbors based on their current states. Further improvements may come from customizing the model’s message passing function and exploring node sampling methods to reduce computational complexity. We compare our approach to conventional machine learning models w.r.t. predictive performance, generalizability to arbitrary mold geometries and computational efficiency.


This thesis is a follow-up work to a bachelor thesis written at our chair in 2022.
This thesis is a follow-up work to a bachelor thesis written at our chair in 2022.
}}
}}

Version vom 27. März 2023, 17:03 Uhr

Vortragende(r) Aaron Gätje
Vortragstyp Proposal
Betreuer(in) Daniel Ebi
Termin Fr 31. März 2023
Vortragsmodus in Präsenz
Kurzfassung Graph Neural Networks (GNNs) have shown great potential for use cases that can be described as graphs. However, training GNNs presents unique challenges due to the characteristics of graph data. The focus of this thesis is to examine their learning abilities by developing a GNN-based surrogate model for the injection molding process from materials science. While numerical simulations can model the mold filling accurately, they are computationally expensive and require significant trial-and-error for parameter optimization.

We propose representing the mold geometry as a static graph and constructing additional node and edge features from domain knowledge. We plan to enhance our model with a self-attention mechanism, allowing dynamic weighting of a node's neighbors based on their current states. Further improvements may come from customizing the model’s message passing function and exploring node sampling methods to reduce computational complexity. We compare our approach to conventional machine learning models w.r.t. predictive performance, generalizability to arbitrary mold geometries and computational efficiency.

This thesis is a follow-up work to a bachelor thesis written at our chair in 2022.