Density-Based Outlier Detection Benchmark on Synthetic Data (Thesis)

Aus SDQ-Institutsseminar
Version vom 17. Juni 2019, 12:55 Uhr von Lena Witterauf (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Lena Witterauf
Vortragstyp Bachelorarbeit
Betreuer(in) Georg Steinbuss
Termin Fr 21. Juni 2019
Kurzfassung Outlier detection is a popular topic in research, with a number of different approaches developed. Evaluating the effectiveness of these approaches however is a rather rarely touched field. The lack of commonly accepted benchmark data most likely is one of the obstacles for running a fair comparison of unsupervised outlier detection algorithms. This thesis compares the effectiveness of twelve density-based outlier detection algorithms in nearly 800.000 experiments over a broad range of algorithm parameters using the probability density as ground truth.