Adaptive Variational Autoencoders for Outlier Detection in Data Streams

Aus IPD-Institutsseminar
Zur Navigation springen Zur Suche springen
Vortragende(r) Florian Pieper
Vortragstyp Masterarbeit
Betreuer(in) Edouard Fouché
Termin Fr 29. März 2019
Kurzfassung Outlier detection targets at the discovery of abnormal data patterns. An Adaptive Variational Autoencoder (AVA) is a novel approach for unsupervised outlier detection in data streams.

First, we present a streaming framework for arbitrary generative models such as Variational Autoencoders (VAE), which we name Adaptive Generative Networks (AGN). The unique property of a generative model is its ability of generating samples from the model.

Second, we introduce Adaptive Variational Autoencoders (AVA) for unsupervised outlier detection in data streams. Adaptive Variational Autoencoders use the AGN framework with a Variational Autoencoder as generative model and automatically adapt the model to an occurring concept drift. Furthermore, they generate their network architecture based on the dimensionality of incoming data to further improve the unsupervised outlier detection experience.

Our experiments against several benchmark outlier data sets show that AVA outperforms the state of the art and successfully adapts to streams with concept drift.