Institutsseminar/2018-12-14 Zusatztermin

Aus SDQ-Institutsseminar
Version vom 3. Dezember 2018, 09:30 Uhr von Adrian Englhardt (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2018/12/14 11:30:00 |raum=Raum 301 (Gebäude 50.34) }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 14. Dezember 2018
Uhrzeit 11:30 – 12:45 Uhr (Dauer: 75 min)
Ort Raum 301 (Gebäude 50.34)
Webkonferenz
Vorheriger Termin Fr 7. Dezember 2018
Nächster Termin Fr 21. Dezember 2018

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Florian Hennerich
Titel Erkennung Semantischer Wortveränderungen auf Textströmen
Vortragstyp Masterarbeit
Betreuer(in) Adrian Englhardt
Vortragssprache
Vortragsmodus
Kurzfassung Die natürliche Sprache befindet sich in ständigem Wandel. Mittels Semantic Change Detection kann eine Änderung der Semantik von Wörtern zwischen Zeitpunkten festgestellt werden. Herkömmliche Semantic Change Detection Systeme arbeiten nur auf statischen Korpora. Durch Social Media ist es möglich, Sprache in Echtzeit zu analysieren. Da bisherige Ansätze jedoch nicht auf Textströmen funktionieren, soll in dieser Masterarbeit ein Echtzeitsystem zur Verarbeitung von Textströmen entworfen werden, welches frühzeitig die Änderung einer Wortbedeutung aufzeigt. Grundlage hierfür sind geeignete Worteinbettungen, die zum einen gute Vektoren liefern und zum anderen trotz Begrenzung des Speichers den Textstrom gut repräsentieren. Zur Evaluation soll ein synthetischer Korpus generiert werden, um die verschiedenen Methoden vergleichen zu können. Anschließend wird eine explorative Untersuchung auf Twitterdaten durchgeführt.
Vortragende(r) Alexander Poth
Titel Statistical Generation of High Dimensional Data Streams with Complex Dependencies
Vortragstyp Bachelorarbeit
Betreuer(in) Edouard Fouché
Vortragssprache
Vortragsmodus
Kurzfassung The evaluation of data stream mining algorithms is an important task in current research. The lack of a ground truth data corpus that covers a large number of desireable features (especially concept drift and outlier placement) is the reason why researchers resort to producing their own synthetic data. This thesis proposes a novel framework ("streamgenerator") that allows to create data streams with finely controlled characteristics. The focus of this work is the conceptualization of the framework, however a prototypical implementation is provided as well. We evaluate the framework by testing our data streams against state-of-the-art dependency measures and outlier detection algorithms.
Neuen Vortrag erstellen

Hinweise