Untersuchung des Trade-Offs zwischen Privacy und Forecasting-Qualität

Aus SDQ-Institutsseminar
Version vom 26. Juni 2018, 08:53 Uhr von Christine Tex (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Till Stöckmann
Vortragstyp Proposal
Betreuer(in) Christine Tex
Termin Fr 29. Juni 2018
Vortragssprache
Vortragsmodus
Kurzfassung Diese Arbeit befasst sich mit den Themen Realisierung des Privacy-Aspekts bei Smart Meter Daten durch Pertubation, sowie der Güte der Forecasts auf ebendiesen Daten. Genaue Vorhersagen über zukünftigen Stromverbrauch (Forecast) gelten als eine der Errungenschaft durch die Etablierung von Smart Metern. Installiert in Privathaushalten stellen Smart Meter aber auch ein neues Einfallstor in die Privatsphäre des Verbrauchers dar. Die Lösung ist es, die Daten vor der weitergehenden Verarbeitung durch Pertubation zu verschleiern. Mit dem Gewinn an Privatsphäre verlieren die Messdaten an Güte. Die Bachelorarbeit befasst sich mit diesen gegensätzlichen Eigenschaften der Messdaten. Zentrale Fragestellung ist, wie weit man die Daten verschleiern kann und trotzdem gute Forecast-Ergebnisse bekommt.