(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r)
|
Timo Kopf
|
Titel
|
Adaptives Online-Tuning für kontinuierliche Zustandsräume
|
Vortragstyp
|
Masterarbeit
|
Betreuer(in)
|
Philip Pfaffe
|
Vortragssprache
|
|
Vortragsmodus
|
|
Kurzfassung
|
Raytracing ist ein rechenintensives Verfahren zur Erzeugung photorealistischer Bilder. Durch die automatische Optimierung von Parametern, die Einfluss auf die Rechenzeit haben, kann die Erzeugung von Bildern beschleunigt werden. Im Rahmen der vorliegenden Arbeit wurde der Auto-Tuner libtuning um ein generalisiertes Reinforcement Learning-Verfahren erweitert, das in der Lage ist, bestimmte Charakteristika der zu zeichnenden Frames bei der Auswahl geeigneter Parameterkonfigurationen zu berücksichtigen. Die hierfür eingesetzte Strategie ist eine ε-gierige Strategie, die für die Exploration das Nelder-Mead-Verfahren zur Funktionsminimierung aus libtuning verwendet. Es konnte gezeigt werden, dass ein Beschleunigung von bis zu 7,7 % in Bezug auf die gesamte Rechenzeit eines Raytracing-Anwendungsszenarios dieser Implementierung gegenüber der Verwendung von libtuning erzielt werden konnte.
|
- Neuen Vortrag erstellen
Hinweise