Institutsseminar/2018-11-30

Aus SDQ-Institutsseminar
Version vom 19. Juni 2018, 12:15 Uhr von Erik Burger (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2018/11/30 11:30:00 |raum=Raum 348 (Gebäude 50.34) }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 30. November 2018
Uhrzeit 11:30 – 12:45 Uhr (Dauer: 75 min)
Ort Raum 348 (Gebäude 50.34)
Webkonferenz
Vorheriger Termin Fr 23. November 2018
Nächster Termin Fr 7. Dezember 2018

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Vitali Chaiko
Titel Ontologie-unterstützte Klassifikation von Software-Anforderungen
Vortragstyp Masterarbeit
Betreuer(in) Sebastian Weigelt
Vortragssprache
Vortragsmodus
Kurzfassung Die Analyse der Lastenhefte für die Planung der Software bringt einen erheblichen manuellen Aufwand mit sich. Bei der Robert Bosch Engineering GmbH werden die Anforderungen aus den Lastenheften der Kunden auf eine V-Prozessmodell-Datenbank abgebildet. Diese Datenbank besteht aus sogenannten internen Anforderungen, die Richtlinien für Hardware-und Softwareentwicklung enthalten. Jede Kundenanforderung muss von den Mitarbeitern manuell auf eine oder mehrere interne Anforderungen abgebildet werden. In Rahmen dieser Arbeit wurde ein automatisiertes Verfahren entwickelt, welches den Mitarbeiter bei dem Abbildungsprozess unterstützen kann. Dafür wurde aus den Textdaten der Kundenanforderungen eine Ontologie automatisch generiert, welche Fachbegriffe und ihre Beziehungen enthält. Aus dieser Ontologie wurden Merkmale erzeugt, welche mit einem unüberwachten Verfahren des maschinellen Lernens, nämlich hiearchisches Clustering gruppiert wurden. Dadurch war es möglich eine neue Kundenanforderung in ein bestehendes Cluster einzuordnen und basierend auf die Kundenanforderungen in dem Cluster Vorschläge für die zutreffenden internen Anforderungen zu erhalten. Um die entstandene Ontologie zu evaluieren, wurde diese auf falsch extrahierte Konzepte und Beziehungen überprüft. 16% der Konzepte und 24% der Relationen erwiesen sich als falsch. Die Voraussage der Vorschläge erreichte einen F-Maß Wert von 62%, bei den Evaluationsmetriken Präzision@5 und Ausbeute@5.
Vortragende(r) Alexander Dick
Titel User-centric Outlier Detection on Energy data
Vortragstyp Bachelorarbeit
Betreuer(in) Holger Trittenbach
Vortragssprache
Vortragsmodus
Kurzfassung Am Campus Nord messen Smart Meter in einer Forschungsfabrik alle 5 Sekunden den Stromverbrauch und weitere elektrische Messgrößen wie z.B. die elektrische Spannung. In meiner Arbeit geht es darum, ein interaktives System zur Erkennung von Auffälligkeiten in den daraus resultierenden Zeitreihen zu erstellen. Zudem soll ein Fachexperte zu einem Teil der Datenpunkte Feedback geben und so die Verwendung von semiüberwachten Lernverfahren ermöglichen. Allerdings sind aktuelle Lernverfahren, die den Nutzer in die Ausreißererkennung einbinden, nicht für Zeitreihen ausgelegt.

In der Arbeit werden die Zeitreihen auf statische Features abgebildet, um die Lernverfahren aus der Literatur anwenden zu können. Danach müssen die Features visualisiert werden, damit der Nutzer Feedback geben kann. Es wurde evaluiert inwiefern ein Fachexperte erkennen kann, ob es sich bei Zeitreihen um Ausreißer handelt und wie er bei der Entscheidung unterstützt werden kann.

Neuen Vortrag erstellen

Hinweise