(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r)
|
Florian Pieper
|
Titel
|
Neural-Based Outlier Detection in Data Streams
|
Vortragstyp
|
Proposal
|
Betreuer(in)
|
Edouard Fouché
|
Vortragssprache
|
|
Vortragsmodus
|
|
Kurzfassung
|
Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Variational Denoising Autoencoder” (VDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches.
|
- Neuen Vortrag erstellen
Hinweise