Institutsseminar/2025-03-28

Aus SDQ-Institutsseminar
Version vom 13. Februar 2025, 14:54 Uhr von Robin Maisch (Diskussion | Beiträge) (Create page)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 28. März 2025
Uhrzeit 14:00 – 14:30 Uhr (Dauer: 30 min)
Ort Raum 348 (Gebäude 50.34)
Prüfer/in
Webkonferenz https://sdq.kastel.kit.edu/wiki/SDQ-Institutsseminar/Microsoft Teams
Vorheriger Termin Mo 24. März 2025
Nächster Termin Fr 23. Mai 2025

Termin in Kalender importieren: iCal (Download)

Vorträge

Low-Code in der Sichtenbasierten Entwicklung
Vortragende(r) Anne-Kathrin Hermann
Vortragstyp Vortrag
Betreuer(in) Lars König
Vortragssprache Englisch
Vortragsmodus in Präsenz
Kurzfassung In recent years, low-code development has been established as an innovative method for software development. It enables the development of a wide range of applications using graphical tools, with little or no knowledge of text-based programming languages. Closely related is model-driven development, where models play a primary role in specifying software systems and generating code partially automatically. While model-driven development supports development processes where developers from different domains work on different models that are kept consistent, in practice, classical model-driven tools are often difficult to use for domain experts with a less technical background. To bridge this gap, we propose a concept for integrating low-code platforms through projective views into model-driven development environments. We provide an initial evaluation of the feasibility of our concept using a development platform for smart home systems as a case study.
Multi-Language and Cross-Language Software Plagiarism Detection
Vortragende(r) Alexander Milster
Vortragstyp Bachelorarbeit
Betreuer(in) Robin Maisch
Vortragssprache Deutsch
Vortragsmodus in Präsenz
Kurzfassung Currently, commonly used plagiarism detection tools can only handle code from one language for a single run.

This thesis deals with two different sub-problems. Firstly, parsing and comparing the code of each occurring language in a single submission set separately (multi-language plagiarism detection) and, secondly, comparing submissions as a whole, despite containing code from multiple languages (cross-language plagiarism detection). In this thesis, we propose supporting multi-language plagiarism detection by concatenating the token lists. For cross-language plagiarism detection, we propose a set of language-agnostic tokens and rules for the order they should be extracted in, which have to be implemented for each supported language. In addition, a dynamic approach that allows more flexible matching of tokens is considered.

Neuen Vortrag erstellen

Hinweise