Using Large Language Models To Analyze Software Architecture Documentation

Aus SDQ-Institutsseminar
Version vom 15. September 2023, 08:24 Uhr von Jan Keim (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Robin Schöppner
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Termin Fr 22. September 2023
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung Begrenzte Trainingsdaten stellen eine Herausforderung für Traceability Link Recovery (TLR) und Inconsistency Detection (ID) dar. Große Sprachmodelle (LLMs) können dieses Problem lösen, da sie oft kein spezifisches Training benötigen. In dieser Arbeit erforschen wir verschiedene Techniken und Methoden für den Einsatz von GPT-4 für TLR und ID. Im Vergleich mit State-of-the-Art-Ansätzen erzielen unsere Ansätze beim Unmentioned-Model-Element-ID ähnliche Leistung. In der Disziplin der Missing-Model-Element ID konnten wir ihre Leistung jedoch nicht erreichen. Beim TLR erzielt Chain-of-Thought-Prompting die besten Ergebnisse, schlägt jedoch auch schlechter ab als State-of-the-Art. Die Ergebnisse sind jedoch vielversprechend und es ist anzunehmen, dass fortschrittlichere LLMs und Techniken zu Verbesserungen führen.