Kurzfassung
|
Manufacturing optimization is crucial for organizations to remain competitive in the market. However, complex processes, such as textile forming, can be challenging to optimize, requiring significant resources. Surrogate-based optimization is an efficient method that uses simplified models to guide the search for optimal parameter combinations of manufacturing processes. Moreover, incorporating uncertainty estimates into the model can further speed up the optimization process, which can be achieved by using Bayesian deep neural networks. Additionally, convolutional neural networks can take advantage of spatial information in the images that are part of the textile forming parameters. In this work, a Bayesian deep convolutional surrogate model is proposed that uses all available process parameters to predict the shear angle of a textile element. By incorporating background information into the surrogate model, it is expected to predict detailed process results, leading to greater efficiency and increased product quality.
|