Surrogate Model Based Process Parameters Optimization of Textile Forming

Aus SDQ-Institutsseminar
Version vom 19. März 2023, 18:54 Uhr von Aleksandr Eismont (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Aleksandr Eismont |email=ukqln@student.kit.edu |vortragstyp=Proposal |betreuer=Bela Böhnke |termin=Institutsseminar/2023-03-31-IPD-Boe…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Aleksandr Eismont
Vortragstyp Proposal
Betreuer(in) Bela Böhnke
Termin Fr 31. März 2023
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung Manufacturing optimization is crucial for organizations to remain competitive in the market. However, optimizing complex processes, such as textile forming, can be challenging and resource-intensive. Surrogate-based optimization can efficiently optimize manufacturing process parameters by using simplified models to guide the search for optimal parameter combinations. Moreover, using a Bayesian deep neural network allows for incorporation of uncertainty estimates into the model, which can speed up the optimization process. In this work, the surrogate model, a Bayesian deep convolutional neural network, is proposed to train with all available process parameters to predict the shear angle of a textile element. It is believed that predicting detailed process results incorporating background information into the surrogate model can lead to greater efficiency and increased product quality.