Institutsseminar/2022-09-02

Aus SDQ-Institutsseminar
Version vom 25. August 2022, 09:44 Uhr von Daniel Betsche (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2021-01-01T14:00:00.000Z |raum=Raum 348 (Gebäude 50.34) |online=https://kit-lecture.zoom.us/j/67744231815 }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 2. September 2022
Uhrzeit 11:30 – 11:50 Uhr (Dauer: 20 min)
Ort Raum 348 (Gebäude 50.34)
Webkonferenz https://kit-lecture.zoom.us/j/67744231815
Vorheriger Termin Fr 1. Januar 2021
Nächster Termin Fr 8. Januar 2021

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Benjamin Jochum
Titel Surrogate models for crystal plasticity - predicting stress, strain and dislocation density over time
Vortragstyp Proposal
Betreuer(in) Daniel Betsche
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung When engineers design structures, prior knowledge of how they will react to external forces is crucial. Applied forces introduce stress, leading to dislocations of individual molecules that ultimately may cause material failure, like cracks, if the internal strain of the material exceeds a certain threshold. We can observe this by applying increasing physical forces to a structure and measure the stress, strain and the dislocation density curves.

Finite Elemente Analysis (FEM) enables the simulation of a material deforming under external forces, but it comes with very high computational costs. This makes it unfeasible to conduct a large number of simulations with varying parameters. In this thesis, we use neural network based sequence models to build a data-driven surrogate model that predicts stress, strain and dislocation density curves produced by an FEM-simulation based on the simulation’s input parameters.

Neuen Vortrag erstellen

Hinweise