Injection Molding Simulation based on Graph Neural Networks (GNNs)

Aus SDQ-Institutsseminar
Vortragende(r) Jonas Zoll
Vortragstyp Bachelorarbeit
Betreuer(in) Daniel Ebi
Termin Fr 24. Juni 2022
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung Numerical filling simulations are an important tool for the development of injection molding parts. Existing simulations rely on numerical solvers based on the finite element method. These solvers are reliable and precise, but very computationally expensive even on simple part geometries.

In this thesis, we aim to develop a faster injection molding simulation based on Graph Neural Networks (GNNs) as a surrogate model. Our approach learns a simulation as a composition of three functions: an encoder, a processor and a decoder. The encoder takes in a graph representation of a 3D geometry of an injection molding part and returns a numeric embedding of each node in the graph. The processor updates the embeddings of each node multiple times based on its neighbors. The decoder then decodes the final embeddings of each node into physically meaningful variables, say, the fill state of the node. Our model can predict the progression of the flow front during a time step with a fixed size. To simulate a full mold filling process, our model is applied sequentially until the entire mold is filled. Our architecture is applicable to any kind of material, geometry and injection process parameters.

We evaluate our architecture by its accuracy and runtime when predicting node properties. We also evaluate our models transfer learning ability on a real world injection molding part.