Automatisiertes Black-Box Software Testing mit neuartigen neuronalen Netzen

Aus SDQ-Institutsseminar
Version vom 26. Oktober 2021, 19:08 Uhr von Daniel Zimmermann (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Vortragende(r) Frederik Scheiderbauer
Vortragstyp Bachelorarbeit
Betreuer(in) Daniel Zimmermann
Termin Fr 5. November 2021
Vortragssprache
Vortragsmodus
Kurzfassung Das Testen von Softwareprojekten ist mit einem hohen Arbeitsaufwand verbunden, dies betrifft insbesondere die grafische Benutzeroberfläche.

Verfahren der künstlichen Intelligenz auf der Grundlage neuronaler Netzwerke können genutzt werden, um viele der besonders aufwändigen Aufgaben schneller oder sogar besser zu lösen als herkömmliche Methoden. In dieser Arbeit wird ein neuartiges neuronales Netzwerk auf seine Fähigkeit hin untersucht, eine Software allein anhand der Pixeldaten ihrer Benutzeroberfläche zu testen. Des Weiteren wird ein Framework entwickelt, welches mithilfe von leistungsfähigen GPUs den Trainingsvorgang deutlich beschleunigen kann.