Institutsseminar/2020-10-09 Zusatztermin

Aus SDQ-Institutsseminar
Version vom 8. September 2020, 13:30 Uhr von Tobias Hey (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2020/10/09 11:30:00 |raum=Raum 348 (Gebäude 50.34) }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 9. Oktober 2020
Uhrzeit 11:30 – 12:45 Uhr (Dauer: 75 min)
Ort Raum 348 (Gebäude 50.34)
Webkonferenz
Vorheriger Termin Fr 2. Oktober 2020
Nächster Termin Fr 9. Oktober 2020

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Fei Chen
Titel Anforderung-zu- Quelltextrückverfolgbarkeit mittels Wort- und Quelltexteinbettungen
Vortragstyp Masterarbeit
Betreuer(in) Tobias Hey
Vortragssprache
Vortragsmodus
Kurzfassung Rückverfolgbarkeitsinformationen helfen Entwickler beim Verständnis von Softwaresystemen und dienen als Grundlage für weitere Techniken wie der Abdeckungsanalyse. In dieser Arbeit wird untersucht, wie Einbettungen für die automatische Rückverfolgbarkeit zwischen Anforderungen und Quelltext eingesetzt werden können. Dazu werden verschiedene Möglichkeiten betrachtet, die Anforderungen und den Quelltext mit Einbettungen zu repräsentieren und anschließend aufeinander abzubilden, um Rückverfolgbarkeitsverbindungen zwischen ihnen zu erzeugen. Für eine Klasse existieren beispielsweise viele Optionen, welche Informationen bzw. welche Klassenelemente zur Berechnung einer Quelltexteinbettung berücksichtigt werden. Für die Abbildung werden zwischen den Einbettungen durch eine Metrik Ähnlichkeitswerte berechnet, mit deren Hilfe Aussagen über die Existenz einer Rückverfolgbarkeitsverbindung zwischen ihren repräsentierten Artefakten getroffen werden können.

In der Evaluation wurden die verschiedenen Möglichkeiten für die Einbettung und Abbildung untereinander und mit anderen Arbeiten verglichen. Bezüglich des F1-Wertes erzeugen Quelltexteinbettungen mit Klassennamen, Methodensignaturen und -kommentaren sowie Abbildungsverfahren, die die Word Mover’s Distance als Ähnlichkeitsmetrik nutzen, die besten projektübergreifenden Ergebnisse. Das beste Verfahren erreicht auf dem Projekt LibEST, welches aus 14 Quelltext- und 52 Anforderungsartefakten besteht, einen F1-Wert von 60,1%. Die beste projektübergreifende Konfiguration erzielt einen durchschnittlichen F1-Wert von 39%.

Vortragende(r) Timo Januschke
Titel Bestimmung der semantischen Funktion von Quelltextabschnitten
Vortragstyp Bachelorarbeit
Betreuer(in) Tobias Hey
Vortragssprache
Vortragsmodus
Kurzfassung Rückverfolgbarkeitsinformationen zwischen Quelltext und Anforderungen ermöglichen es Werkzeugen Programmierer besser bei der Navigation und der Bearbeitung von Quelltext zu unterstützen. Um solche Verbindungen automatisiert herstellen zu können, muss die Semantik der Anforderungen und des Quelltextes verstanden werden. Im Rahmen dieser Arbeit wird ein Verfahren zur Beschreibung der geteilten Semantik von Gruppierungen von Programmelementen entwickelt. Das Verfahren basiert auf dem statistischen Themenmodell LDA und erzeugt eine Menge von Schlagwörtern als Beschreibung dieser Semantik. Es werden natürlichsprachliche Inhalte im Quelltext der Gruppierungen analysiert und genutzt, um das Modell zu trainieren. Um Unsicherheiten in der Wahl der Parameter von LDA auszugleichen und die Robustheit der Schlagwortmenge zu verbessern, werden mehrere LDA-Modelle kombiniert. Das entwickelte Verfahren wurde im Rahmen einer Nutzerstudie evaluiert. Insgesamt wurde eine durchschnittliche Ausbeute von 0.73 und ein durchschnittlicher F1-Wert von 0.56 erreicht.
Neuen Vortrag erstellen

Hinweise