Evaluierung von unbalancierten Lernmethoden
Vortragende(r) | Daniela Ruchser | |
---|---|---|
Vortragstyp | Masterarbeit | |
Betreuer(in) | Jakob Bach | |
Termin | Fr 8. November 2019 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | Die binäre Klassifikation von Daten mit unbalancierter Klassenverteilung ist ein relevantes Data-Mining-Problem. In vielen Anwendungsgebieten tritt die interessierende Klasse wesentlich seltener auf als die Mehrheitsklasse. Standard-Klassifikationsalgorithmen und -Evaluationsmaße sind in solchen Situationen nicht gut geeignet. In der Literatur gibt es viele Ansätze, die dieses Problem mit geeigneteren Evaluationsmaßen und Lernmethoden adressieren. Wir führen eine umfassende experimentelle Vergleichsstudie mit vielen Lernmethoden, Evaluationsmaßen und Klassifikationsalgorithmen durch, um herauszufinden, wie gut die Performanz der Methoden auf einer Vielzahl von Datensätzen ist. Im zweiten Teil unserer Arbeit untersuchen wir den Zusammenhang zwischen verschiedenen Datencharakteristiken und der Performanz der Methoden mithilfe von Meta-Learning. |