Institutsseminar/2019-06-21 Zusatztermin

Aus SDQ-Institutsseminar
Version vom 14. Juni 2019, 12:25 Uhr von Benjamin Jochum (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2019/06/21 11:30:00 |raum=Raum 333 (Gebäude 50.34) }} Institutsseminar/2019-06-21 Zusatztermin“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 21. Juni 2019
Uhrzeit 11:30 – 12:30 Uhr (Dauer: 60 min)
Ort Raum 333 (Gebäude 50.34)
Webkonferenz
Vorheriger Termin Fr 14. Juni 2019
Nächster Termin Fr 28. Juni 2019

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Lena Witterauf
Titel Density-Based Outlier Detection Benchmark on Synthetic Data (Thesis)
Vortragstyp Bachelorarbeit
Betreuer(in) Georg Steinbuss
Vortragssprache
Vortragsmodus
Kurzfassung Outlier detection is a popular topic in research, with a number of different approaches developed. Evaluating the effectiveness of these approaches however is a rather rarely touched field. The lack of commonly accepted benchmark data most likely is one of the obstacles for running a fair comparison of unsupervised outlier detection algorithms. This thesis compares the effectiveness of twelve density-based outlier detection algorithms in nearly 800.000 experiments over a broad range of algorithm parameters using the probability density as ground truth.
Vortragende(r) Henning Ballweber
Titel Untersuchung von Black Box Modellen zur Entscheidungsfindung in Sentiment Analysen
Vortragstyp Bachelorarbeit
Betreuer(in) Clemens Müssener
Vortragssprache
Vortragsmodus
Kurzfassung Diese Arbeit wird sich mit der Erklärbarkeit von Sentimentanalyse befassen. Sentimentanalyse ist ein aktuelles Forschungsthema, das sich mit der automatisierten Auswertung der Stimmung von Texten befasst. Dabei klassifiziert ein Entscheider diese als positiv oder negativ. Jedoch sind die meisten hier angewandten Verfahren des maschinellen Lernens Black Boxes, also für Menschen nicht unmittelbar nachvollziehbar. Die Arbeit hat zum Ziel, verschiedene Verfahren der Sentimentanalyse auf Erklärbarkeit zu untersuchen. Hierbei werden eine Datenbank aus Filmrezensionen sowie Word Embeddings auf Basis des word2vec-Modells verwendet.
Neuen Vortrag erstellen

Hinweise

Institutsseminar/2019-06-21 Zusatztermin