Attribut:Kurzfassung

Aus SDQ-Institutsseminar

Dies ist ein Attribut des Datentyps Text.

Unterhalb werden 20 Seiten angezeigt, auf denen für dieses Attribut ein Datenwert gespeichert wurde.
A
Die Klassifikation von Entwurfsentscheidungen in natürlichsprachiger Softwaredokumentation ermöglichen bessere Implementierungs- und Wartungsprozesse und die Erstellung konsistenter Dokumentationsartefakte. Das in dieser Arbeit entwickelte Klassifikationsschema für Entwurfsentscheidungen erweitert bestehende Ansätze, um klar umrissene Klassen festzulegen und Entwurfsentscheidungen vollständig abzubilden. Das Schema wurde in einem iterativen Prozess die Passform des Klassifikationsschemas durch die Anwendung auf die reale Softwarearchitekturdokumentation von 17 Fallstudien verbessert und validiert. In einem zweiten Teil wird eine Anwendungsmöglichkeit des entwickelten Klassifikationsschemas eröffnet, indem in einer Proof-of-Concept-Implementierung untersucht wird, mit welchen Ansätzen Entwurfsentscheidungen identifiziert und klassifiziert werden können. Durch die Evaluation mit statistischen Maßen wird gezeigt, welche Methoden zur Textvorverarbeitung, zur Überführung in Vektorrepräsentationen und welche Lernalgorithmen besonders für diese Klassifikation geeignet sind.  +
In dieser Arbeit werden mehrere rekurrente neuronale Netze verglichen. Es werden LSTMs, GRUs, CTRNNs und Elman Netze untersucht. Die Netze werden dabei untersucht sich einen Punkt zu merken und anschließend nach dem Punkt mit einem virtuellen Roboterarm zu greifen. Bei LSTM, GRU und Elman Netzen wird auch untersucht wie die Netze die Aufgabe lösen, wenn jedes Neuron nur auf den eigenen Speicher zugreifen kann. Dabei hat sich herausgestellt, dass LSTMs und GRUs deutlich besser bei den Experimenten bewertet werden als CTRNNs und Elman Netze. Außerdem werden die Rechenzeit und der Zusammenhang zwischen der Anzahl der zu trainierenden Parameter und der Ergebnisse der Experimente verglichen.  +
Temporal text corpora like the Google Ngram Data Set usually incorporate a vast number of words and expressions, called ngrams, and their respective usage frequencies over the years. The large quantity of entries complicates working with the data set, as transformations and queries are resource and time intensive. However, many use cases do not require the whole corpus to have a sufficient data set and achieve acceptable query results. We propose various compression methods to reduce the total number of ngrams in the corpus. Specially, we propose compression methods that, given an input dictionary of target words, find a compression tailored for queries on a specific topic. Additionally, we utilize time-series compression methods for quick estimations about the properties of ngram usage frequencies. As basis for our compression method design and experimental validation serve CHQL (Conceptual History Query Language) queries on the Google Ngram Data Set.  +
Temporal text corpora like the Google Ngram dataset usually incorporate a vast number of words and expressions, called ngrams, and their respective usage frequencies over the years. The large quantity of entries complicates working with the dataset, as transformations and queries are resource and time intensive. However, many use-cases do not require the whole corpus to have a sufficient dataset and achieve acceptable results. We propose various compression methods to reduce the absolute number of ngrams in the corpus. Additionally, we utilize time-series compression methods for quick estimations about the properties of ngram usage frequencies. As basis for our compression method design and experimental validation serve CHQL (Conceptual History Query Language) queries on the Google Ngram dataset. The goal is to find compression methods that reduce the complexity of queries on the corpus while still maintaining good results.  +
Research papers are commonly classified into categories, and we can see the existing contributions as a massive document directory, with sub-folders. However, research typically evolves at an extremely fast pace; consider for instance the field of computer science. It can be difficult to categorize individual research papers, or to understand how research communities relate to each other. In this thesis we will analyze and visualize semantics from massive document directories. The results will be displayed using the arXiv corpus, which contains domain-specific (computer science) papers of the past thirty years. The analysis will illustrate and give insight about past trends of document directories and how their relationships evolve over time.  +
Non-intrusive load monitoring (NILM) algorithms aim at disaggregating consumption curves of households to the level of single appliances. However, there is no conventional way of quantifying and representing the tradeoff between the quality of analyses, such as the accuracy of the disaggregated consumption curves, and the load on the available computing resources. Thus, it is hard to plan the underlying infrastructure and resources for the analysis system and to find the optimal configuration of the system. This thesis introduces a system that assesses the quality of different analyses and their runtime behavior. This assessment is done based on varying configuration parameters and changed characteristics of the input dataset. Varied characteristics are the granularity of the data and the noisiness of the data. We demonstrate that the collected runtime behavior data can be used to choose reasonable characteristics of the input data set.  +
Generating source code from models is one of the major advantages of a model-driven development process but most of the time this generated code does not suffice and developers are still required to write code by hand. This leads to the question of how to best integrate handwritten and generated code. Previous authors suggested a number of possible solutions to this problem of integrating handwritten and generated code but the possibilities to objectively compare these alternatives are still limited. Therefore we collected the different analysis criteria suggested by other authors as well as complemented them with additional criteria proposed by senior developers. We then applied these criteria to the possible integration approaches presented by previous authors to create an overview for developers to use when having to choose an integration approach for their model-driven project. Applying the results of this analysis we chose the best-fitting integration approach for the development of a large industrial development project and found out that migrating to this suggested integration approach would improve the overall software quality regarding complexity, coupling, and cohesion.  +
Führende Supercomputer im Bereich des High Performance Computing (HPC) bieten immense Rechenleistung mit Millionen von Kernen. Allerdings kostet der Unterhalt und Energiebedarf solcher Systeme jedes Jahr Millionen von Euro. Dies macht eine effiziente Nutzung der Rechenressourcen von HPC-Systemen unabdingbar. Das von den meisten HPC-Anwendungen verwendete Bulk-Synchronous-Parallel-Modell könnte aber durch unvorhergesehene interne oder externe Einflüsse zu ungleich verteilter Arbeitslast führen. Verwandte Forschung in diesem Bereich berücksichtigt oft nur die sogenannte Load Imbalance auf eine Weise, die keinen Vergleich zwischen MPI-Ranks ermöglicht. Unser Ansatz zielt hingegen darauf ab, einen breiteren Satz von Metriken zu betrachten, um eine allgemeinere Bewertung der Load-Imbalance zu ermöglichen. Unser Beitrag ermöglicht ein besseres Verständnis der Ursachen von Ineffizienzen in HPC-Anwendungen.  +
Über die letzten 20 Jahre haben sich wissenschaftliche Workflows zu einem wichtigen Aspekt moderner Forschung entwickelt. Die von Workflows gebotene Abstraktion ist zu einer regelmäßigen Hilfe im Umgang mit der hohen Komplexität von Simulationen und Berechnungen in vielen wissenschaftlichen Bereichen geworden. Um die immer stärker ansteigende Menge an Daten und die Herausforderungen neuer Technologien zu bewältigen, sind wissenschaftliche Workflow-Management-Systeme ein wertvolles Werkzeug für die Orchestrierung und Überwachung von Workflows auf verteilten Rechensystemen. Ein großer Teil neuer Forschung beschäftigt sich mit neuen Systemen und ihren Features. Jedoch gibt es nur wenig Forschung, die sich mit dem möglicherweise unterschiedlichen Performance-Verhalten von Workflow-Anwendungen beschäftigen, wenn diese mit unterschiedlichen Workflow-Management-Systemen ausgeführt werden. Diese Arbeit zielt darauf ab, Benchmarks für mehrere Workflows und Workflow-Management-Systeme bereitzustellen. Diese können Wissenschaftlern dann die Wahl eines Workflow-Systems erleichtern. Unsere Messungen ergeben, dass unterschiedliche Workflow-Management-Systeme keinen signifikanten Einfluss auf die Ausführungszeit von Workflow-Anwendungen haben.  +
Rückverfolgbarkeitsinformationen helfen Entwickler beim Verständnis von Softwaresystemen und dienen als Grundlage für weitere Techniken wie der Abdeckungsanalyse. In dieser Arbeit wird untersucht, wie Einbettungen für die automatische Rückverfolgbarkeit zwischen Anforderungen und Quelltext eingesetzt werden können. Dazu werden verschiedene Möglichkeiten betrachtet, die Anforderungen und den Quelltext mit Einbettungen zu repräsentieren und anschließend aufeinander abzubilden, um Rückverfolgbarkeitsverbindungen zwischen ihnen zu erzeugen. Für eine Klasse existieren beispielsweise viele Optionen, welche Informationen bzw. welche Klassenelemente zur Berechnung einer Quelltexteinbettung berücksichtigt werden. Für die Abbildung werden zwischen den Einbettungen durch eine Metrik Ähnlichkeitswerte berechnet, mit deren Hilfe Aussagen über die Existenz einer Rückverfolgbarkeitsverbindung zwischen ihren repräsentierten Artefakten getroffen werden können. In der Evaluation wurden die verschiedenen Möglichkeiten für die Einbettung und Abbildung untereinander und mit anderen Arbeiten verglichen. Bezüglich des F1-Wertes erzeugen Quelltexteinbettungen mit Klassennamen, Methodensignaturen und -kommentaren sowie Abbildungsverfahren, die die Word Mover’s Distance als Ähnlichkeitsmetrik nutzen, die besten projektübergreifenden Ergebnisse. Das beste Verfahren erreicht auf dem Projekt LibEST, welches aus 14 Quelltext- und 52 Anforderungsartefakten besteht, einen F1-Wert von 60,1%. Die beste projektübergreifende Konfiguration erzielt einen durchschnittlichen F1-Wert von 39%.  +
Durch den Umstieg auf erneuerbare Energien und die damit einhergehende Dezentralisierung sowie die immer weiter fortschreitende Digitalisierung des Stromnetzes ergeben sich neue Herausforderungen für den Betrieb eines Stromnetzes. Eine dieser Herausforderungen sind die deutlich erweiterten Angriffsmöglichkeiten, die sich durch den verstärkten Einsatz von Intelligenten Stromzählern und Geräten des Internet der Dinge und deren maßgeblichem Beitrag zur Stromverteilung ergeben. Um diese Angriffsmöglichkeiten in Analysen abbilden zu können, wird in dieser Bachelorarbeit eine Erweiterung der bestehenden Analyse von Angriffen auf Intelligente Stromnetze aus dem Smart Grid Resilience Framework vorgenommen. Zu diesem Zweck erfolgt eine Transformation des bestehenden Modells in eine Netzwerktopologie, auf welcher dann eine Angreiferanalyse ausgeführt wird. Die Evaluation dieser Angreiferanalyse erfolgt dabei anhand der bereits bestehenden Angreiferanalyse des Smart Grid Resilience Frameworks. Weiterhin wird die Genauigkeit der Transformation sowie die Skalierbarkeit von Transformation und Angreiferanalyse evaluiert.  +
Modern applications typically need to find solutions to complex problems under limited time and resources. In settings, in which the exact computation of indicators can either be infeasible or economically undesirable, the use of “anytime” algorithms, which can return approximate results when interrupted, is particularly beneficial, since they offer a natural way to trade computational power for result accuracy. However, modern systems typically need to solve multiple problems simultaneously. E.g. in order to find high correlations in a dataset, one needs to examine each pair of variables. This is challenging, in particular if the number of variables is large and the data evolves dynamically. This thesis focuses on the following question: How should one distribute resources at anytime, in order to maximize the overall quality of multiple targets? First, we define the problem, considering various notions of quality and user requirements. Second, we propose a set of strategies to tackle this problem. Finally, we evaluate our strategies via extensive experiments.  +
In this work, we consider ngram corpora, i.e., a set of word chains of different lengths and its usage frequency in natural language. For example, the 3-gram "bag of words" may be used 200 times. Obviously, there exists a dependence between the usage frequency of (1) the unigrams "bag", "of", and "words", (2) the bigrams "bag of" and "of words", and (3) the trigram "bag of words". This connection is partially used in language models to implement grammar correction or speech recognition. From a database point of view, the ngram corpus contains either redundant information or information that can be well estimated. This is an indication that we can achieve a high reduction of the corpus size while still providing its information with high accuracy. In this work, we research the connection between n- and (n+1)-grams and vice versa. Our objective is to store only a part of the full ngram corpus and estimate the rest of the corpus.  +
In industrial processes (Industry 4.0) and other fields in our lives like the energy or health sector, the confidentiality of data becomes increasingly important. For the protection of confidential information on critical systems, it is crucial to be able to find relevant attack paths in different access-control contexts to a critical element. In order to minimize costs, it is important to already consider this issue in the design phase of the software architecture. There are already approaches considering the topic of attack path generation. However, they do not consider software architecture modeling or they do not consider both vulnerabilities and access control mechanisms. Hence, this thesis presents an approach for finding all potential attack paths in a software architecture model considering access control and vulnerabilities. However, all attack paths are often to many, so the approach presented here introduces and utilizes meaningful filter criteria based on wide-spread vulnerability classification standards.  +
In this thesis, we present our approach to handle uncertainty in access control during design time. We propose the concept of trust as a composition of environmental factors that impact the validity of and consequently trust in access control properties. We use fuzzy inference systems as a way of defining how environmental factors are combined. These trust values are than used by an analysis process to identify issues which can result from a lack of trust. We extend an existing data flow diagram approach with our concept of trust. Our approach of adding knowledge to a software architecture model and providing a way to analyze model instances for access control violations shall enable software architects to increase the quality of models and further verify access control requirements under uncertainty. We evaluate the applicability based on the availability, the accuracy and the scalability regarding the execution time.  +
Distributed message-based microservice systems architecture has seen considerable evolution in recent years, making them easier to extend, reuse and manage. But, the challenge lies in the fact that such software systems are constituted of components that are more and more autonomous, distributed, and are deployed with different technologies. On the one hand such systems through their flexible architecture provide a lot of advantages. On the other hand, they are more likely to be changed fast and thus make their architecture less reliable and up-to-date. Architecture reconstruction method can support to obtain the updated architecture at different phases of development life cycle for software systems. However, the existing architecture reconstruction methods do not support the extraction for message-based microservice systems. In our work we try to handle this problem by extending an existing approach of architecture model extraction of message-based microservice systems from their tracing data (source code instrumented) in a way that such systems can be supported. Through our approach, we provide a way to automatically extract performance models for message-based microservice systems through dynamic analysis. We then evaluate our approach with the comparison of extracted model with the manual model with statistical metrics such as precision, recall and F1-score in order to find out the accuracy of our extracted model.  +
In times of highly interconnected systems, confidentiality becomes a crucial security quality attribute. As fixing confidentiality breaches becomes costly the later they are found, software architects should address confidentiality early in the design time. During the architectural design process, software architects take Architectural Design Decisions (ADDs) to handle the degrees of freedom, i.e. uncertainty. However, ADDs are often subjected to assumptions and unknown or imprecise information. Assumptions may turn out to be wrong so they have to be revised which re-introduces uncertainty. Thus, the presence of uncertainty at design time prevents from drawing precise conclusions about the confidentiality of the system. It is, therefore, necessary to assess the impact of uncertainties at the architectural level before making a statement about confidentiality. To address this, we make the following contributions: First, we propose a novel uncertainty categorization approach to assess the impact of uncertainties in software architectures. Based on that, we provide an uncertainty template that enables software architects to structurally derive types of uncertainties and their impact on architectural element types for a domain of interest. Second, we provide an Uncertainty Impact Analysis (UIA) that enables software architects to specify which architectural elements are directly affected by uncertainties. Based on structural propagation rules, the tool automatically derives further architectural elements which are potentially affected. Using the large-scale open-source contract tracing application called Corona Warn App (CWA) as a case study, we show that the UIA achieves 100% recall while maintaining 44%-91% precision when analyzing the impact of uncertainties on architectural elements.  +
Im Rahmen der Masterarbeit „Architektur-basierte Wartbarkeitsvorhersage von Metamodellen mittels Evolutionsszenarien“ wurden Metamodelle für die Modellierung von Metamodell-Architekturen sowie Evolutionsszenarien, die Änderungen auf Metamodell-Architekturen beschreiben, entworfen. Das Metamodell für Metamodell-Architekturen ermöglicht die Modellierung von komplexen Metamodellen auf einer abstrakteren Ebene analog zur Software-Architektur. Für beide Metamodelle wurden Editoren für die Modellierung entwickelt. Zusätzlich wurde ein Werkzeug zur Vorhersage der Wartbarkeit, basierend auf einem Evolutionsszenario, entwickelt. Die entwickelten Werkzeuge wurden anschließend auf ihre Benutzbarkeit über eine Benutzerstudie sowie auf Funktionalität über Fallstudien analysiert.  +
To deploy an ML model in practice, a stakeholder needs to understand the behaviour and implications of this model. To help stakeholders develop this understanding, researchers propose a variety of technical approaches, so called eXplainable Artificial Intelligence (XAI). Current XAI approaches follow very task- or model-specific objectives. There is currently no consensus on a generic method to evaluate most of these technical solutions. This complicates comparing different XAI approaches and choosing an appropriate solution in practice. To address this problem, we formally define two generic experiments to measure human understanding of ML models. From these definitions we derive two technical strategies to improve understanding, namely (1) training a surrogate model and (2) translating inputs and outputs to effectively perceivable features. We think that most existing XAI approaches only focus on the first strategy. Moreover, we show that established methods to train ML models can also help stakeholders to better understand ML models. In particular, they help to mitigate cognitive biases. In a case study, we demonstrate that our experiments are practically feasible and useful. We suggest that future research on XAI should use our experiments as a template to design and evaluate technical solutions that actually improve human understanding.  +
In Multi-Agenten Systemen (MAS) arbeiten verschiedene Agenten an einem gemeinsamen Problem. Auch im Bereich der natürlichen Sprachverarbeitung (NLP) werden solche Systeme verwendet. Agenten eines MAS für natürliche Sprache können neben Ergebnissen auch Ergebnisse mit Konfidenzen, s.g. Hypothesen generieren. Diese Hypothesen spiegeln die Mehrdeutigkeit der natürlichen Sprache wider. Sind Agenten abhängig voneinander, so kann eine falsche Hypothese schnell zu einer Fehlerfortpflanzung in die Hypothesen der abhängigen Agenten führen. Die Exploration von Hypothesen bietet die Chance, die Ergebnisse von Agenten zu verbessern. Diese Arbeit verbessert die Ergebnisse von Agenten eines MAS für NLP durch eine kontrollierte Exploration des Hypothesen-Suchraums. Hierfür wird ein Framework zur Exploration und Bewertung von Hypothesen entwickelt. In einer Evaluation mit drei Agenten konnten vielversprechende Ergebnisse hinsichtlich der Verbesserung erzielt werden. So konnte etwa mit der Top-X Exploration eine durchschnittliche Verbesserung des F1-Maßes des Topic-Detection-Agenten von ursprünglich 40% auf jetzt 49% erreicht werden.  +