Attribut:Kurzfassung

Aus SDQ-Institutsseminar

Dies ist ein Attribut des Datentyps Text.

Unterhalb werden 20 Seiten angezeigt, auf denen für dieses Attribut ein Datenwert gespeichert wurde.
A
Raytracing ist ein rechenintensives Verfahren zur Erzeugung photorealistischer Bilder. Durch die automatische Optimierung von Parametern, die Einfluss auf die Rechenzeit haben, kann die Erzeugung von Bildern beschleunigt werden. Im Rahmen der vorliegenden Arbeit wurde der Auto-Tuner libtuning um ein generalisiertes Reinforcement Learning-Verfahren erweitert, das in der Lage ist, bestimmte Charakteristika der zu zeichnenden Frames bei der Auswahl geeigneter Parameterkonfigurationen zu berücksichtigen. Die hierfür eingesetzte Strategie ist eine ε-gierige Strategie, die für die Exploration das Nelder-Mead-Verfahren zur Funktionsminimierung aus libtuning verwendet. Es konnte gezeigt werden, dass ein Beschleunigung von bis zu 7,7 % in Bezug auf die gesamte Rechenzeit eines Raytracing-Anwendungsszenarios dieser Implementierung gegenüber der Verwendung von libtuning erzielt werden konnte.  +
Diese Arbeit behandelt die Beschreibung des Verhalten von Simulationen, welche von Modellen der Domänen Geschäftsprozessen und Informationsystem beschriebene Abläufe simulieren. Das beschreiben des Verhalten von Simulation visiert dabei das schaffen weiterer Vergleichsmöglichkeiten für selbige an. Dafür werden Formalismen hinsichtlich ihrer Beschreibungsmöglichkeiten für solche Simulationen evaluiert, mit dem Ziel einen Formalismus zu finden, welcher das Verhalten der Simulationen beschreiben kann. In der Literatur ist das Vergleichen von Simulationen mit dem Vergleichen des Simulationsergebnisses verknüpft. Das Erzeugen des Ergebnisses wird nicht zum Vergleich herangezogen. Das Einbeziehen des Verhaltens von Simulationen bietet weitere Kriterien für das Vergleichen von Simulationen. In einem ersten Schritt, werden innerhalb einer Studie Formslismen hinsichtlich ihrer Modelliergungsmöglichkeiten für das Beschreiben des genannten Verhaltens evaluiert. Im zweiten Schritt wird mithilfe der Studienergebnissen ein Formalismus entworfen, welcher auf die Anforderungen für das Beschreiben des Verhaltens der Simulationen angepasst ist. Das Ergebnis dieser Arbeit bildet ein Formalismus, welcher dahingehend evaluiert wurde, das Verhalten von Simulationen im genannten Kontext zu beschreiben.  +
Im Rahmen dieser Bachelorarbeit wurde die Relation zwischen Dokumentationen der Softwarearchitektur in natürlicher Sprache und formellen Modellen untersucht. Dabei wurde versucht herauszufinden, wie sich die Entwurfsentscheidungen in der Dokumentation auf das Modell auswirken. Zu diesem Zweck wurden zwei Fallstudien durchgeführt. Zunächst wurde ein Modell der Implementierung erstellt, das auf dem Palladio-Komponentenmodell basiert. Danach wurden die Aussagen in der Dokumentation klassifiziert und anschließend wurde untersucht, welche Entwurfsentscheidungen im Modell wiederzufinden sind und welche nicht dargestellt werden. Die Ergebnisse wurden genutzt, um eine Aussage über die Relation zwischen den Artefakten zu treffen.  +
Bei Disfluenzen handelt es sich um Unterbrechungen des normalen Sprechflusses, die durch Fehler, Wortwiederholungen, Füllwörter oder ähnliche andere Wörter entstanden sind. Sie sind ein wesentlicher Bestandteil von spontan gesprochenen Äußerungen. Sie erschweren jedoch eine nachfolgende Bearbeitung dieser Äußerungen und müssen daher korrigiert werden. Eine automatisierte Korrektur erweist sich aufgrund des unregelmäßigen Aufbaus der Disfluenzen als schwierig. Deshalb wird in dieser Bachelorarbeit die Erkennung und Korrektur von Disfluenzen in natürlichsprachlichen Äußerungen untersucht. Hierzu wird mit Hilfe eines maschinellen Lernverfahrens ein Klassifikator entwickelt, der Disfluenzen erkennt und korrigiert. Der Klassifikator wird dabei als Agent für die Rahmenarchitektur PARSE umgesetzt. Die Funktionalität des entworfenen Werkzeugs wird anhand von händischen Transkriptionen sowie einem Testdatensatz des Switchboard-Korpus evaluiert. Auf diesen beiden Datensätzen wird entsprechend ein F1-Wert von 0,710 beziehungsweise 0,792 erreicht.  +
Die Klassifikation von Entwurfsentscheidungen in natürlichsprachiger Softwaredokumentation ermöglichen bessere Implementierungs- und Wartungsprozesse und die Erstellung konsistenter Dokumentationsartefakte. Das in dieser Arbeit entwickelte Klassifikationsschema für Entwurfsentscheidungen erweitert bestehende Ansätze, um klar umrissene Klassen festzulegen und Entwurfsentscheidungen vollständig abzubilden. Das Schema wurde in einem iterativen Prozess die Passform des Klassifikationsschemas durch die Anwendung auf die reale Softwarearchitekturdokumentation von 17 Fallstudien verbessert und validiert. In einem zweiten Teil wird eine Anwendungsmöglichkeit des entwickelten Klassifikationsschemas eröffnet, indem in einer Proof-of-Concept-Implementierung untersucht wird, mit welchen Ansätzen Entwurfsentscheidungen identifiziert und klassifiziert werden können. Durch die Evaluation mit statistischen Maßen wird gezeigt, welche Methoden zur Textvorverarbeitung, zur Überführung in Vektorrepräsentationen und welche Lernalgorithmen besonders für diese Klassifikation geeignet sind.  +
In dieser Arbeit werden mehrere rekurrente neuronale Netze verglichen. Es werden LSTMs, GRUs, CTRNNs und Elman Netze untersucht. Die Netze werden dabei untersucht sich einen Punkt zu merken und anschließend nach dem Punkt mit einem virtuellen Roboterarm zu greifen. Bei LSTM, GRU und Elman Netzen wird auch untersucht wie die Netze die Aufgabe lösen, wenn jedes Neuron nur auf den eigenen Speicher zugreifen kann. Dabei hat sich herausgestellt, dass LSTMs und GRUs deutlich besser bei den Experimenten bewertet werden als CTRNNs und Elman Netze. Außerdem werden die Rechenzeit und der Zusammenhang zwischen der Anzahl der zu trainierenden Parameter und der Ergebnisse der Experimente verglichen.  +
Temporal text corpora like the Google Ngram Data Set usually incorporate a vast number of words and expressions, called ngrams, and their respective usage frequencies over the years. The large quantity of entries complicates working with the data set, as transformations and queries are resource and time intensive. However, many use cases do not require the whole corpus to have a sufficient data set and achieve acceptable query results. We propose various compression methods to reduce the total number of ngrams in the corpus. Specially, we propose compression methods that, given an input dictionary of target words, find a compression tailored for queries on a specific topic. Additionally, we utilize time-series compression methods for quick estimations about the properties of ngram usage frequencies. As basis for our compression method design and experimental validation serve CHQL (Conceptual History Query Language) queries on the Google Ngram Data Set.  +
Temporal text corpora like the Google Ngram dataset usually incorporate a vast number of words and expressions, called ngrams, and their respective usage frequencies over the years. The large quantity of entries complicates working with the dataset, as transformations and queries are resource and time intensive. However, many use-cases do not require the whole corpus to have a sufficient dataset and achieve acceptable results. We propose various compression methods to reduce the absolute number of ngrams in the corpus. Additionally, we utilize time-series compression methods for quick estimations about the properties of ngram usage frequencies. As basis for our compression method design and experimental validation serve CHQL (Conceptual History Query Language) queries on the Google Ngram dataset. The goal is to find compression methods that reduce the complexity of queries on the corpus while still maintaining good results.  +
Research papers are commonly classified into categories, and we can see the existing contributions as a massive document directory, with sub-folders. However, research typically evolves at an extremely fast pace; consider for instance the field of computer science. It can be difficult to categorize individual research papers, or to understand how research communities relate to each other. In this thesis we will analyze and visualize semantics from massive document directories. The results will be displayed using the arXiv corpus, which contains domain-specific (computer science) papers of the past thirty years. The analysis will illustrate and give insight about past trends of document directories and how their relationships evolve over time.  +
Non-intrusive load monitoring (NILM) algorithms aim at disaggregating consumption curves of households to the level of single appliances. However, there is no conventional way of quantifying and representing the tradeoff between the quality of analyses, such as the accuracy of the disaggregated consumption curves, and the load on the available computing resources. Thus, it is hard to plan the underlying infrastructure and resources for the analysis system and to find the optimal configuration of the system. This thesis introduces a system that assesses the quality of different analyses and their runtime behavior. This assessment is done based on varying configuration parameters and changed characteristics of the input dataset. Varied characteristics are the granularity of the data and the noisiness of the data. We demonstrate that the collected runtime behavior data can be used to choose reasonable characteristics of the input data set.  +
Generating source code from models is one of the major advantages of a model-driven development process but most of the time this generated code does not suffice and developers are still required to write code by hand. This leads to the question of how to best integrate handwritten and generated code. Previous authors suggested a number of possible solutions to this problem of integrating handwritten and generated code but the possibilities to objectively compare these alternatives are still limited. Therefore we collected the different analysis criteria suggested by other authors as well as complemented them with additional criteria proposed by senior developers. We then applied these criteria to the possible integration approaches presented by previous authors to create an overview for developers to use when having to choose an integration approach for their model-driven project. Applying the results of this analysis we chose the best-fitting integration approach for the development of a large industrial development project and found out that migrating to this suggested integration approach would improve the overall software quality regarding complexity, coupling, and cohesion.  +
Führende Supercomputer im Bereich des High Performance Computing (HPC) bieten immense Rechenleistung mit Millionen von Kernen. Allerdings kostet der Unterhalt und Energiebedarf solcher Systeme jedes Jahr Millionen von Euro. Dies macht eine effiziente Nutzung der Rechenressourcen von HPC-Systemen unabdingbar. Das von den meisten HPC-Anwendungen verwendete Bulk-Synchronous-Parallel-Modell könnte aber durch unvorhergesehene interne oder externe Einflüsse zu ungleich verteilter Arbeitslast führen. Verwandte Forschung in diesem Bereich berücksichtigt oft nur die sogenannte Load Imbalance auf eine Weise, die keinen Vergleich zwischen MPI-Ranks ermöglicht. Unser Ansatz zielt hingegen darauf ab, einen breiteren Satz von Metriken zu betrachten, um eine allgemeinere Bewertung der Load-Imbalance zu ermöglichen. Unser Beitrag ermöglicht ein besseres Verständnis der Ursachen von Ineffizienzen in HPC-Anwendungen.  +
Über die letzten 20 Jahre haben sich wissenschaftliche Workflows zu einem wichtigen Aspekt moderner Forschung entwickelt. Die von Workflows gebotene Abstraktion ist zu einer regelmäßigen Hilfe im Umgang mit der hohen Komplexität von Simulationen und Berechnungen in vielen wissenschaftlichen Bereichen geworden. Um die immer stärker ansteigende Menge an Daten und die Herausforderungen neuer Technologien zu bewältigen, sind wissenschaftliche Workflow-Management-Systeme ein wertvolles Werkzeug für die Orchestrierung und Überwachung von Workflows auf verteilten Rechensystemen. Ein großer Teil neuer Forschung beschäftigt sich mit neuen Systemen und ihren Features. Jedoch gibt es nur wenig Forschung, die sich mit dem möglicherweise unterschiedlichen Performance-Verhalten von Workflow-Anwendungen beschäftigen, wenn diese mit unterschiedlichen Workflow-Management-Systemen ausgeführt werden. Diese Arbeit zielt darauf ab, Benchmarks für mehrere Workflows und Workflow-Management-Systeme bereitzustellen. Diese können Wissenschaftlern dann die Wahl eines Workflow-Systems erleichtern. Unsere Messungen ergeben, dass unterschiedliche Workflow-Management-Systeme keinen signifikanten Einfluss auf die Ausführungszeit von Workflow-Anwendungen haben.  +
Extensibility is a common strategy for addressing the diverse requirements of software users. However, extensions—often distributed through online repositories—typically lack guarantees about their performance characteristics. This Master's Thesis proposes an approach to estimate the performance of software extensions before they are made available to end users. Such early-stage evaluation provides valuable feedback to developers and helps prevent stakeholder dissatisfaction. Designing a single analyzer that can evaluate both the extension and the base system is often infeasible, due to the usage of multiple programming languages and the dependencies between the two parts of the system. To address this, we investigate the composition of static source code analysis and model-based architecture analysis. Our method is evaluated through a case study on an extensible Customer Relationship Management (CRM) system, demonstrating both the feasibility of performance estimation and the benefits of analyzer composition.  +
Rückverfolgbarkeitsinformationen helfen Entwickler beim Verständnis von Softwaresystemen und dienen als Grundlage für weitere Techniken wie der Abdeckungsanalyse. In dieser Arbeit wird untersucht, wie Einbettungen für die automatische Rückverfolgbarkeit zwischen Anforderungen und Quelltext eingesetzt werden können. Dazu werden verschiedene Möglichkeiten betrachtet, die Anforderungen und den Quelltext mit Einbettungen zu repräsentieren und anschließend aufeinander abzubilden, um Rückverfolgbarkeitsverbindungen zwischen ihnen zu erzeugen. Für eine Klasse existieren beispielsweise viele Optionen, welche Informationen bzw. welche Klassenelemente zur Berechnung einer Quelltexteinbettung berücksichtigt werden. Für die Abbildung werden zwischen den Einbettungen durch eine Metrik Ähnlichkeitswerte berechnet, mit deren Hilfe Aussagen über die Existenz einer Rückverfolgbarkeitsverbindung zwischen ihren repräsentierten Artefakten getroffen werden können. In der Evaluation wurden die verschiedenen Möglichkeiten für die Einbettung und Abbildung untereinander und mit anderen Arbeiten verglichen. Bezüglich des F1-Wertes erzeugen Quelltexteinbettungen mit Klassennamen, Methodensignaturen und -kommentaren sowie Abbildungsverfahren, die die Word Mover’s Distance als Ähnlichkeitsmetrik nutzen, die besten projektübergreifenden Ergebnisse. Das beste Verfahren erreicht auf dem Projekt LibEST, welches aus 14 Quelltext- und 52 Anforderungsartefakten besteht, einen F1-Wert von 60,1%. Die beste projektübergreifende Konfiguration erzielt einen durchschnittlichen F1-Wert von 39%.  +
Durch den Umstieg auf erneuerbare Energien und die damit einhergehende Dezentralisierung sowie die immer weiter fortschreitende Digitalisierung des Stromnetzes ergeben sich neue Herausforderungen für den Betrieb eines Stromnetzes. Eine dieser Herausforderungen sind die deutlich erweiterten Angriffsmöglichkeiten, die sich durch den verstärkten Einsatz von Intelligenten Stromzählern und Geräten des Internet der Dinge und deren maßgeblichem Beitrag zur Stromverteilung ergeben. Um diese Angriffsmöglichkeiten in Analysen abbilden zu können, wird in dieser Bachelorarbeit eine Erweiterung der bestehenden Analyse von Angriffen auf Intelligente Stromnetze aus dem Smart Grid Resilience Framework vorgenommen. Zu diesem Zweck erfolgt eine Transformation des bestehenden Modells in eine Netzwerktopologie, auf welcher dann eine Angreiferanalyse ausgeführt wird. Die Evaluation dieser Angreiferanalyse erfolgt dabei anhand der bereits bestehenden Angreiferanalyse des Smart Grid Resilience Frameworks. Weiterhin wird die Genauigkeit der Transformation sowie die Skalierbarkeit von Transformation und Angreiferanalyse evaluiert.  +
Modern applications typically need to find solutions to complex problems under limited time and resources. In settings, in which the exact computation of indicators can either be infeasible or economically undesirable, the use of “anytime” algorithms, which can return approximate results when interrupted, is particularly beneficial, since they offer a natural way to trade computational power for result accuracy. However, modern systems typically need to solve multiple problems simultaneously. E.g. in order to find high correlations in a dataset, one needs to examine each pair of variables. This is challenging, in particular if the number of variables is large and the data evolves dynamically. This thesis focuses on the following question: How should one distribute resources at anytime, in order to maximize the overall quality of multiple targets? First, we define the problem, considering various notions of quality and user requirements. Second, we propose a set of strategies to tackle this problem. Finally, we evaluate our strategies via extensive experiments.  +
In this work, we consider ngram corpora, i.e., a set of word chains of different lengths and its usage frequency in natural language. For example, the 3-gram "bag of words" may be used 200 times. Obviously, there exists a dependence between the usage frequency of (1) the unigrams "bag", "of", and "words", (2) the bigrams "bag of" and "of words", and (3) the trigram "bag of words". This connection is partially used in language models to implement grammar correction or speech recognition. From a database point of view, the ngram corpus contains either redundant information or information that can be well estimated. This is an indication that we can achieve a high reduction of the corpus size while still providing its information with high accuracy. In this work, we research the connection between n- and (n+1)-grams and vice versa. Our objective is to store only a part of the full ngram corpus and estimate the rest of the corpus.  +
In industrial processes (Industry 4.0) and other fields in our lives like the energy or health sector, the confidentiality of data becomes increasingly important. For the protection of confidential information on critical systems, it is crucial to be able to find relevant attack paths in different access-control contexts to a critical element. In order to minimize costs, it is important to already consider this issue in the design phase of the software architecture. There are already approaches considering the topic of attack path generation. However, they do not consider software architecture modeling or they do not consider both vulnerabilities and access control mechanisms. Hence, this thesis presents an approach for finding all potential attack paths in a software architecture model considering access control and vulnerabilities. However, all attack paths are often to many, so the approach presented here introduces and utilizes meaningful filter criteria based on wide-spread vulnerability classification standards.  +