Institutsseminar/2022-01-20 Zusatztermin

Aus SDQ-Institutsseminar
Version vom 9. Januar 2023, 13:37 Uhr von Daniel Betsche (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2023-01-20T14:00:00.000Z |raum=Raum 010 (Gebäude 50.34) |online=https://kit-lecture.zoom.us/j/67744231815 }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 20. Januar 2023
Uhrzeit 14:00 – 14:45 Uhr (Dauer: 45 min)
Ort Raum 010 (Gebäude 50.34)
Webkonferenz https://kit-lecture.zoom.us/j/67744231815
Vorheriger Termin Fr 20. Januar 2023
Nächster Termin Fr 27. Januar 2023

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Benjamin Jochum
Titel Surrogate models for crystal plasticity - predicting stress, strain and dislocation density over time (Defense)
Vortragstyp Masterarbeit
Betreuer(in) Daniel Betsche
Vortragssprache
Vortragsmodus online
Kurzfassung In this work, we build surrogate models to approximate the deformation behavior of face-centered cubic crystalline structures under load, based on the continuum dislocation dynamics (CDD) simulation. The CDD simulation is a powerful tool for modeling the stress, strain, and evolution of dislocations in a material, but it is computationally expensive. Surrogate models provide approximations of the results at a much lower computational cost. We propose two approaches to building surrogate models that only require the simulation parameters as inputs and predict the sequences of stress, strain, and dislocation density. The approaches comprise the use of time-independent multi-target regression and recurrent neural networks. We demonstrate the effectiveness by providing an extensive study of different implementations of both approaches. We find that, based on our dataset, a gradient-boosted trees model making time-independent predictions performs best in general and provides insights into feature importance. The approach significantly reduces the computational cost while still producing accurate results.
Neuen Vortrag erstellen

Hinweise