Institutsseminar/2021-02-19

Aus SDQ-Institutsseminar
Version vom 14. Januar 2022, 13:17 Uhr von Erik Burger (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Termin (Alle Termine)
Datum Freitag, 19. Februar 2021
Uhrzeit 14:00 – 14:45 Uhr (Dauer: 45 min)
Ort
Webkonferenz https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams
Vorheriger Termin Fr 19. Februar 2021
Nächster Termin Fr 26. Februar 2021

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Nico Peter
Titel Model-Based Rule Engine for the Reconstruction of Component-Based Software Architectures for Quality Prediction
Vortragstyp Masterarbeit
Betreuer(in) Yves Kirschner
Vortragssprache
Vortragsmodus
Kurzfassung With architecture models, software developers and architects are able to enhance their documentation and communication, perform architecture analysis, design decisions and finally with PCM, can start quality predictions. However, the manual creation of component architecture models for complex systems is difficult and time consuming. Instead, the automatic generation of architecture models out of existing projects saves time and effort. For this purpose, a new approach is proposed which uses technology specific rule artifacts and a rule engine that transforms the source code of software projects into a model representation, applies the given rules and then automatically generates a static software architecture model. The resulting architecture model is then usable for quality prediction purposes inside the PCM context. The concepts for this approach are presented and a software system is developed, which can be easily extended with new rule artifacts to be useful for a broader range of technologies used in different projects. With the implementation of a prototype, the collection of technology specific rule sets and an evaluation including different reference systems the proposed functionality is proven and a solid foundation for future improvements is given.
Neuen Vortrag erstellen

Hinweise

Teilnahme von Prof. Koziolek am 23.12.2020 bestätigt.