Institutsseminar/2024-03-08: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 2: | Zeile 2: | ||
|datum=2024-03-08T11:30:00.000Z | |datum=2024-03-08T11:30:00.000Z | ||
|raum=Raum 010 (Gebäude 50.34) | |raum=Raum 010 (Gebäude 50.34) | ||
|online=https://sdq.kastel.kit.edu/ | |online=https://sdq.kastel.kit.edu/institutsseminar/Microsoft_Teams | ||
}} | }} |
Version vom 11. Dezember 2023, 01:25 Uhr
Datum | Freitag, 8. März 2024 | |
---|---|---|
Uhrzeit | 11:30 – 12:15 Uhr (Dauer: 45 min) | |
Ort | Raum 010 (Gebäude 50.34) | |
Webkonferenz | https://sdq.kastel.kit.edu/institutsseminar/Microsoft Teams | |
Vorheriger Termin | Fr 2. Februar 2024 | |
Nächster Termin | Fr 15. März 2024 |
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r) | Ian Winter |
---|---|
Titel | Context Generation for Code and Architecture Changes Using Large Language Models |
Vortragstyp | Masterarbeit |
Betreuer(in) | Yves Kirschner |
Vortragssprache | |
Vortragsmodus | in Präsenz |
Kurzfassung | While large language models have succeeded in generating code, the struggle is to modify large existing code bases. The Generated Code Alteration (GCA) process is designed, implemented, and evaluated in this thesis. The GCA process can automatically modify a large existing code base, given a natural language task. Different variations and instantiations of the process are evaluated in an industrial case study. The code generated by the GCA process is compared to code written by human developers. The language model-based GCA process was able to generate 13.3 lines per error, while the human baseline generated 65.8 lines per error. While the generated code did not match the overall human performance in modifying large code bases, it could still provide assistance to human developers. |
- Neuen Vortrag erstellen