Institutsseminar/2024-01-19: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
Zeile 2: Zeile 2:
|datum=2024-01-19T11:30:00.000Z
|datum=2024-01-19T11:30:00.000Z
|raum=Raum 010 (Gebäude 50.34)
|raum=Raum 010 (Gebäude 50.34)
|online=https://sdq.kastel.kit.edu/wiki/SDQ-Institutsseminar/Microsoft_Teams
|online=https://sdq.kastel.kit.edu/institutsseminar/Microsoft_Teams
}}
}}

Aktuelle Version vom 11. Dezember 2023, 01:23 Uhr

Termin (Alle Termine)
Datum Freitag, 19. Januar 2024
Uhrzeit 11:30 – 12:15 Uhr (Dauer: 45 min)
Ort Raum 010 (Gebäude 50.34)
Webkonferenz https://sdq.kastel.kit.edu/institutsseminar/Microsoft Teams
Vorheriger Termin Mo 1. Januar 2024
Nächster Termin Fr 2. Februar 2024

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Elias Hofele
Titel Identifying Security Requirements in Natural Language Documents
Vortragstyp Masterarbeit
Betreuer(in) Sophie Corallo
Vortragssprache
Vortragsmodus in Präsenz
Kurzfassung The automatic identification of requirements, and their classification according to their security objectives, can be helpful to derive insights into the security of a given system. However, this task requires significant security expertise to perform. In this thesis, the capability of modern Large Language Models (such as GPT) to replicate this expertise is investigated. This requires the transfer of the model's understanding of language to the given specific task. In particular, different prompt engineering approaches are combined and compared, in order to gain insights into their effects on performance. GPT ultimately performs poorly for the main tasks of identification of requirements and of their classification according to security objectives. Conversely, the model performs well for the sub-task of classifying the security-relevance of requirements. Interestingly, prompt components influencing the format of the model's output seem to have a higher performance impact than components containing contextual information.
Neuen Vortrag erstellen

Hinweise