Institutsseminar/2021-11-05 Zusatztermin: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Termin |datum=2021-11-05T11:30:00.000Z |raum=https://conf.dfn.de/webapp/conference/979160755 }}“)
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Termin
{{Termin
|datum=2021-11-05T11:30:00.000Z
|datum=2021-11-05T11:30:00.000Z
|raum=https://conf.dfn.de/webapp/conference/979160755
|raum=Raum 348 (Gebäude 50.34), https://conf.dfn.de/webapp/conference/979160755
}}
}}

Version vom 2. November 2021, 15:14 Uhr

Termin (Alle Termine)
Datum Freitag, 5. November 2021
Uhrzeit 11:30 – 11:50 Uhr (Dauer: 20 min)
Ort Raum 348 (Gebäude 50.34), https://conf.dfn.de/webapp/conference/979160755
Webkonferenz
Vorheriger Termin Fr 29. Oktober 2021
Nächster Termin Fr 5. November 2021

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Tobias Haßberg
Titel Development of an Active Learning Approach for One Class Classification using Bayesian Uncertainty
Vortragstyp Proposal
Betreuer(in) Bela Böhnke
Vortragssprache
Vortragsmodus
Kurzfassung HYBRID: This Proposal will be online AND in the seminar room 348.

When working with large data sets, in many situations one has to deals with a large set data from a single class and only few negative examples from other classes. Learning classifiers, which can assign data points to one of the groups, is known as one-class classification (OCC) or outlier detection.

The objective of this thesis is to develop and evaluate an active learning process to train an OCC. The process uses domain knowledge to reasonably adopt a prior distribution. Knowing that prior distribution, query strategies will be evaluated, which consider the certainty, more detailed the uncertainty, of the estimated class membership scorings. The integration of the prior distribution and the estimation of uncertainty, will be modeled using a gaussian process.

Neuen Vortrag erstellen

Hinweise