Institutsseminar/2021-04-30: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Termin |datum=2020/04/30 14:00:00 |raum=https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams }}“)
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
{{Termin
{{Termin
|datum=2020/04/30 14:00:00
|datum=2021/04/30 14:00:00
|raum=https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams
|raum=https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams
}}
}}

Version vom 19. Oktober 2020, 11:45 Uhr

Termin (Alle Termine)
Datum Freitag, 30. April 2021
Uhrzeit 14:00 – 15:45 Uhr (Dauer: 105 min)
Ort https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams
Webkonferenz
Vorheriger Termin Fr 30. April 2021
Nächster Termin Fr 7. Mai 2021
Die Dauer dieses Termins beträgt derzeit 105 Minuten. Bitte ggf. einen weiteren Raum reservieren und den Termin auf zwei Räume aufteilen. Dazu unter Termine eine zusätzliche Terminseite anlegen und die Vorträge neu zuweisen.

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Joshua Gleitze
Titel Methodology for Evaluating a Domain-Specific Model Transformation Language
Vortragstyp Masterarbeit
Betreuer(in) Heiko Klare
Vortragssprache
Vortragsmodus
Kurzfassung Sobald ein System durch mehrere Modelle beschrieben wird, können sich diese verschiedenen Beschreibungen auch gegenseitig widersprechen. Modelltransformationen sind ein geeignetes Mittel, um das selbst dann zu vermeiden, wenn die Modelle von mehreren Parteien parallel bearbeitet werden. Es gibt mittlerweile reichhaltige Forschungsergebnisse dazu, Änderungen zwischen zwei Modellen zu transformieren. Allerdings ist die Herausforderung, Modelltransformationen zwischen mehr als zwei Modellen zu entwickeln, bislang unzureichend gelöst. Die Gemeinsamkeiten-Sprache ist eine deklarative, domänenspezifische Programmiersprache, mit der multidirektionale Modelltransformationen programmiert werden können, indem bidirektionale Abbildungsspezifikationen kombiniert werden. Da sie bis jetzt jedoch nicht empirisch validiert wurde, stellt es eine offene Frage dar, ob die Sprache dazu geeignet ist, realistische Modelltransformationen zu entwickeln, und welche Vorteile die Sprache gegenüber einer alternativen Programmiersprache für Modelltransformationen bietet.

In dieser Abschlussarbeit entwerfe ich eine Fallstudie, mit der die Gemeinsamkeiten-Sprache evaluiert wird. Ich bespreche die Methodik und die Validität dieser Fallstudie. Weiterhin präsentiere ich Kongruenz, eine neue Eigenschaft für bidirektionale Modelltransformationen. Sie stellt sicher, dass die beiden Richtungen einer Transformation zueinander kompatibel sind. Ich leite aus praktischen Beispielen ab, warum wir erwarten können, dass Transformationen normalerweise kongruent sein werden. Daraufhin diskutiere ich die Entwurfsentscheidungen hinter einer Teststrategie, mit der zwei Modelltransformations- Implementierungen, die beide dieselbe Konsistenzspezifikation umsetzen, getestet werden können. Die Teststrategie beinhaltet auch einen praktischen Einsatzzweck von Kongruenz. Zuletzt stelle ich Verbesserungen der Gemeinsamkeiten-Sprache vor.

Die Beiträge dieser Abschlussarbeit ermöglichen gemeinsam, eine Fallstudie zu Programmiersprachen für Modelltransformationen umzusetzen. Damit kann ein besseres Verständnis der Vorteile dieser Sprachen erzielt werden. Kongruenz kann die Benutzerfreundlichkeit beliebiger Modelltransformationen verbessern und könnte sich als nützlich herausstellen, um Modelltransformations-Netzwerke zu konstruieren. Die Teststrategie kann auf beliebige Akzeptanztests für Modelltransformationen angewendet werden.

Vortragende(r) Jonas Lehmann
Titel Modellierung und Simulation von verketteten Ausfallszenarien in Palladio
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Krach
Vortragssprache
Vortragsmodus
Kurzfassung Heutige emergente und verteilte Softwaresysteme sollen auch bei Teilausfällen ein bestimmtes Minimum an Funktionalität bereitstellen. Die Nachweisbarkeit von Reaktionen auf Fehlerszenarien ist deshalb bereits in frühen Phasen der Entwicklung essenziell. Denn so lassen sich Aussagen über die Zuverlässigkeit und Resilienz an leichtgewichtigen Modellen statt teuren Experimenten treffen.

Bisherige Performance-Analysen im Palladio-Komponenten-Modell (PCM) modellieren Ausfälle stochastisch und verhindern es so, bestimmte Fehlerauftritte gezielt zu untersuchen. Die, im Rahmen dieser Arbeit bereitgestellte Modellierung von verketteten Ausfallszenarien erlaubt eine explizite Szenariendefinition und integriert probabilistisch abhängige Fehlerauftritte in das PCM. Durch Anpassungen am Palladio-Plugin SimuLizar ist es nun außerdem möglich, die erstellten Modelle in der Simulation auszuwerten.

Am Fallbeispiel eines Lastverteilungssystems konnte die Evaluation einerseits die technische Funktionalität der Implementierung validieren. Zusätzlich wird gezeigt, dass der Ansatz eine Einordnung verschiedener Entwurfsalternativen von LoadBalancern ermöglicht, wodurch die Entscheidungsfindung in der System-Entwicklung unterstützt werden kann.

Vortragende(r) Moritz Gstür
Titel Vergleich von Reverse-Engineering-Ansätzen für Software-Architekturen
Vortragstyp Bachelorarbeit
Betreuer(in) Yves Kirschner
Vortragssprache
Vortragsmodus
Kurzfassung Diese Arbeit dient der Ermittlung der Vergleichbarkeit und des Funktionsumfanges verfügbarer Reverse-Engineering-Ansätze für Software-Architekturen. Ziel der Arbeit war insbesondere die Feststellung der Eignung der Ansätze für die Rückgewinnung Komponenten- und Microservice-basierter Software-Architekturen. Hierfür wurden acht Ansätze auf 22 Fallstudien angewandt und die Ergebnisse zur Identifikation von Stärken, Problemen und Einschränkungen der Ansätze genutzt. Es konnte gezeigt werden, dass ein Vergleich der Ansätze aufgrund der Heterogenität der Ergebnisse nicht durchführbar ist. Eine Erkennung der Abhängigkeiten von Microservices sowie eine eindeutige Identifikation bestehender Komponenten und ihrer Schnittstellen war mithilfe der Ansätze nicht möglich.
Neuen Vortrag erstellen

Hinweise