SDQ-Institutsseminar: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 23: Zeile 23:
|sort=Veranstaltungsdatum
|sort=Veranstaltungsdatum
|order=ascending
|order=ascending
|limit=1
|limit=2
|format=plainlist
|format=plainlist
|template=Termine für Datum
|template=Termine für Datum

Version vom 20. Dezember 2019, 10:36 Uhr

Das Institutsseminar des Instituts für Programmstrukturen und Datenorganisation (IPD) ist eine ständige Lehrveranstaltung, die den Zweck hat, über aktuelle Forschungsarbeiten am Institut zu informieren. Insbesondere soll Studierenden am Institut die Gelegenheit gegeben werden, über ihre Bachelor- und Masterarbeiten vor einem größeren Auditorium zu berichten. Schwerpunkte liegen dabei auf der Problemstellung, den Lösungsansätzen und den erzielten Ergebnissen. Das Seminar steht aber allen Studierenden und Mitarbeiter/-innen des KIT sowie sonstigen Interessierten offen.

Ort Gebäude 50.34, Seminarraum 348
Zeit jeweils freitags, 11:30–13:00 Uhr

Die Vorträge müssen den folgenden zeitlichen Rahmen einhalten:

  • Masterarbeit: 30 Minuten Redezeit + 15 Minuten Diskussion
  • Bachelorarbeit: 20 Minuten Redezeit + 10 Minuten Diskussion
  • Proposal: 12 Minuten Redezeit + 8 Minuten Diskussion

Weitere Informationen: https://sdqweb.ipd.kit.edu/wiki/Institutsseminar. Bei Fragen und Anmerkungen können Sie eine E-Mail an das Institutsseminar-Team schreiben.

Nächste Vorträge

Freitag, 14. Juni 2024, 11:30 Uhr

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Alina Valta
Titel Optimierung des Migrationsverfahrens in modellbasierten E/E-Entwicklungswerkzeugen durch bedarfsorientierte Prozessierung der Historie von Bestandsmodellen
Vortragstyp Masterarbeit
Betreuer(in) Erik Burger
Vortragsmodus in Präsenz
Kurzfassung Im Model-driven Engineering werden Modelle in der Entwicklung von Systemen eingesetzt, um die Eigenschaften dieser Systeme zu modellieren und ihren Entwicklungsprozess zu unterstützen. Diese Arbeit untersucht, ob die Migration solcher Modelle samt ihrer Historie optimiert werden kann, indem die aktuelle Modellversion priorisiert migriert wird, sodass vor Abschluss der Migration der Historie auf dem Modell gearbeitet werden kann. Das vorgestellte Migrationskonzept wird für die Migration im modellbasierten Entwicklungswerkzeug PREEvision, entwickelt von der Vector Infromatik GmbH, prototypisch implementiert und evaluiert.

In PREEvision können auf Basis eines Metamodells Modelle von E/E-Architekturen erstellt werden. Diese Modelle bestehen aus Millionen von Artefakten und können mehrere tausend Modellstände haben. Beim Wechsel zur nächst neueren PREEvision-Version kann das Metamodell verändert worden sein, weshalb die erstellten Modelle samt Historie migriert werden müssen, um sie weiter verwenden zu können. Hierfür wird eine Modelltransformation definiert. Bisher wurde diese zuerst auf dem ältesten Modellstand ausgeführt. Für alle weiteren Modellstände wurden nur die Änderungen zum jeweils nächsten Modellstand in Form von Deltas betrachtet, um eine inkrementelle Modelltransformation auf den geänderten Bereichen des Modells auszuführen. Das Modell kann erst bearbeitet werden, wenn die komplette Migration abgeschlossen ist.

Das Migrationskonzept von PREEvision wird in dieser Arbeit dahingehen angepasst, dass zuerst die Modelltransformation auf dem aktuellen Modellstand ausgeführt wird. Danach kann bereits auf diesem migrierten Modellstand weitergearbeitet werden. Die Historie wird migriert, indem eine inkrementelle Modelltransformation mithilfe von Rückwärtsdeltas, die jeweils die Änderungen zum Vorgängermodellstand angeben, ausgeführt wird. Das Metamodell der Deltas und die Implementierung der Migration selbst konnten unverändert übernommen werden. Lediglich die Logik zur Erstellung und Wiederherstellung des dafür verwendeten Backups mussten angepasst werden.

Die Evaluation des Konzept erfolgt mithilfe zweier Testmodelle. Zum einen wurde erfolgreich überprüft, ob unabhängig vom eingesetzten Migrationskonzept das gleiche Modell entsteht. Zum anderen wurden eine Reihe von Anwendungsfällen durchgeführt, die sicherstellen, dass die wichtigsten PREEvision Funktionen auf dem Modell ausgeführt werden können, bevor die Historie vollständig migriert wurde. Für die untersuchten Modelle konnte je nach Modell ein Speedup von 1,17 oder 1,37 für den Wechsel zur nächsten PREEvision-Version erreicht werden. Vor dem Einsatz des Migrationskonzepts sollten jedoch auch für größere Kundenmodelle die Laufzeiten gemessen werden, um eine genauere Vorhersage über die Höhe des Effizienzgewinns treffen zu können.

Vortragende(r) Julian Roßkothen
Titel Source-Target-Mapping von komplexen Relationen in Modell-zu-Modell-Transformationen
Vortragstyp Masterarbeit
Betreuer(in) Erik Burger
Vortragsmodus in Präsenz
Kurzfassung Bei Modelltransformationen kann es vorkommen, dass Objekte dupliziert werden müssen. Das ist zum Beispiel der Fall, wenn eine Relation zu einer Komposition transformiert wird. Die Probleme können allerdings auch komplexer sein, wenn Quellmetamodell und Zielmetamodell sich stark voneinander unterscheiden.

Die graphische Modelltransformationssprache M²ToS wurde um zwei Sprachkonzepte erweitert, sodass es einfacher ist Objekte dynamisch bei einer Modelltransformation zu Vervielfältigen. Eines der Konzepte kann beeinflussen, wie Objekte bei einer Transformation übertragen werden. Das andere Konzept kann durch eine Nachbereitung des Zielmodells Objekte bei Bedarf duplizieren. Die beiden Spracherweiterung wurden anhand von einem Katalog von Modelltransformationsoperatoren, einigen Praxisbeispielen und durch eine Umfrage zur Benutzbarkeit evaluiert. Dabei hat sich herausgestellt, dass die Sprachkonzepte die Mächtigkeit von M²ToS zwar erhöhen, die Komplexität der Sprache für den Benutzer aber auch erhöht wird.


Freitag, 21. Juni 2024, 11:30 Uhr

iCal (Download)
Ort: Raum 010 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Odilo Bügler
Titel Extraktion von Label-Propagationsfunktionen für Informationsflussanalysen aus architekturellen Verhaltensbeschreibungen
Vortragstyp Bachelorarbeit
Betreuer(in) Christopher Gerking
Vortragsmodus in Präsenz
Kurzfassung Vertraulichkeit stellt eine Sicherheitseigenschaft dar, die für Systeme von großer Bedeutung sein kann. Eine Möglichkeit, Vertraulichkeitsverletzungen bereits in frühen Phasen des Softwareentwicklungsprozesses zu finden, ist die Analyse auf Datenflussdiagrammen (DFDs). Für eine solche Analyse beschreibt Seifermann eine Transformation aus architekturellen Verhaltensbeschreibungen – insbesondere der des Palladio-Komponentenmodells (PCM). Diese erfordert jedoch noch eine manuelle Vertraulichkeitsspezifikation und berücksichtigt keine impliziten Informationsflüsse. In dieser Arbeit wird daher eine Erweiterung des Transformationsprozesses erarbeitet. Diese verringert den nötigen Spezifikationsaufwand in Form von Label-Propagationsfunktionen und bezieht vorhandene Informationen über implizite Flüsse mit ein. Dafür werden Konzepte aus Typsystemen für Sicherheit herangezogen und auf den Transformationsprozess übertragen. Variablenabhängigkeiten im PCM werden dabei extrahiert und dienen als Grundlage, um Label-Propagationsfunktionen zu generieren. Das Konzept des Sicherheitskontexts wird weiter in die Analyse eingebracht, um implizite Flüsse zu erkennen. Anschließend wird die Erweiterung implementiert und auf die Reduktion des Spezifikationsaufwands sowie die Genauigkeit evaluiert.
Vortragende(r) Jonas Lehmann
Titel Iterative Quelltextanalyse für Informationsflusssicherheit zur Überprüfung von Vertraulichkeit auf Architekturebene
Vortragstyp Masterarbeit
Betreuer(in) Frederik Reiche
Vortragsmodus in Präsenz
Kurzfassung Heutige Softwaresysteme, die Daten mit unterschiedlicher Vertraulichkeit verarbeiten, müssen strenge Sicherheitsanforderungen erfüllen. Sicherheitsanalysen sollten bereits in der Entwurfsphase auf Architekturebene eingeplant werden, da Fehlerbehebungen ein wachsender Kostenfaktor sind, je später sie im Entwicklungsprozess durchgeführt werden.

Auch wenn Architekturanalysen Verletzungen von Sicherheitsspezifikationen früh auf- decken können, schließt ein vermeintlich sicherer Entwurf nicht aus, dass zusätzliche Schwachstellen erst durch die Implementierung in das System gelangen. Daher gibt es Kopplungsansätze, die aus Quelltextanalysen gewonnene Implementierungsdetails in die Architekturanalyse einbinden. So werden Schwachstellen aufgedeckt, die ohne Kopplung unentdeckt bleiben.

Bisherige Kopplungsansätze führen die Quelltextanalyse jedoch nur einmalig durch und projizieren alle Ergebnisse auf einmal zurück in die Architektursicht. Hierbei gab es Indikatoren, dass es in einigen Anwendungsszenarien durch die einmalige Ausführung zu Genauigkeits-, Performanz-, und Skalierbarkeitsproblemen kommt.

Diese Masterarbeit adressiert die Probleme mit einem iterativen Ansatz, der die Informationen für die Quelltextanalyse partitioniert und die Analyse damit mehrfach ausführt. Da die Genauigkeit für manche Sicherheitsbegriffe außerdem von der Zusammenführung der Implementierungsdetails abhängt, kann die Architekturanalyse im iterativen Ansatz auch mehrfach auf einzelnen dieser Details ausgeführt werden.

Der iterative Ansatz wurde fallstudienbasiert evaluiert, um die Auswirkung auf Genauigkeit, Performanz und Skalierbarkeit im Vergleich zum nicht-iterativen Ansatz zu überprüfen. Im Bereich der Genauigkeit hat sich die Sensitivität gefundener Verletzungen in der Architektur erhöht, z. B. in Verbindung mit der Quelltextanalyse JOANA von 0,3 auf 0,95. Mit der steigenden Anzahl an Analysedurchführungen im iterativen Ansatz verlängert sich die Ausführungszeit, was die Performanz vermindert. Jedoch erlaubt der iterative gegenüber dem nicht-iterativen Ansatz größere Eingaben, wie sich in der Skalierbarkeitsevaluation gezeigt hat.

Vortragende(r) Anne-Kathrin Hermann
Titel Praxis der Forschung: Low Code in der sichtenbasierten Entwicklung
Vortragstyp Vortrag
Betreuer(in) Lars König
Vortragsmodus online
Kurzfassung In den letzten Jahren hat sich die Low-Code-Entwicklung (LCD) als eine innovative Methode zur Anwendungsentwicklung etabliert. Die LCD ermöglicht die Erstellung vielfältiger Anwendungen durch den Einsatz graphischer Tools, ohne oder mit nur geringen Kenntnissen textbasierter Programmiersprachen. Im Gegensatz dazu steht die Modellgetriebene Entwicklung (MDE), die auf Modellen als primäres Entwicklungswerkzeug basiert, um Softwaresysteme zu spezifizieren und Code teilweise automatisch zu generieren. Ein Teil davon ist die sichtbasierte Entwicklung, die sich auf die Darstellung eines Systems über verschiedene Sichten konzentriert. Innerhalb des geplanten Projekts wird ein Konzept entwickelt, um eine Low-Code-Sicht in ein sichtbasiertes System zu integrieren. Dies ermöglicht die Nutzung der leicht bedien- und erlernbaren Low-Code-Plattform (LCP) und erlaubt gleichzeitig eine flexible Erweiterung der Anwendung über andere Sichten. Dieses Konzept wird durch eine Fallstudie und Experteninterviews evaluiert.