Bayesian Optimization for Wrapper Feature Selection: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 2: Zeile 2:
|vortragender=Adrian Kruck
|vortragender=Adrian Kruck
|email=uaenk@student.kit.edu
|email=uaenk@student.kit.edu
|vortragstyp=Proposal
|vortragstyp=Masterarbeit
|betreuer=Jakob Bach
|betreuer=Jakob Bach
|termin=Institutsseminar/2019-06-07
|termin=Institutsseminar/2019-12-20
|kurzfassung=Wrapper feature selection can lead to highly accurate classifications. However, the computational costs for this are very high in general. Bayesian Optimization on the other hand has already proven to be very efficient in optimizing black-box functions. This approach uses Bayesian Optimization in order to minimize the number of evaluations, i.e. the training of models with different feature subsets. We will use Gaussian processes, random forests and other regression learners for the surrogate model. On 10 different classification datasets the approach will be compared against established wrapper feature selection methods, but also against filter and embedded methods.
|kurzfassung=TBD
}}
}}

Version vom 5. Dezember 2019, 09:14 Uhr

Vortragende(r) Adrian Kruck
Vortragstyp Masterarbeit
Betreuer(in) Jakob Bach
Termin Fr 20. Dezember 2019
Vortragssprache
Vortragsmodus
Kurzfassung TBD