Bayesian Optimization for Wrapper Feature Selection: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Adrian Kruck |email=adrian.kruck@googlemail.com |vortragstyp=Proposal |betreuer=Jakob Bach |termin=Institutsseminar/2019-06-07 |kurzfas…“)
 
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:
|betreuer=Jakob Bach
|betreuer=Jakob Bach
|termin=Institutsseminar/2019-06-07
|termin=Institutsseminar/2019-06-07
|kurzfassung=...
|kurzfassung=Wrapper feature selection can lead to highly accurate classifications. However, the computational costs for this are very high in general. Bayesian Optimization on the other hand has already proven to be very efficient in optimizing black box functions. This approach uses Bayesian Optimization in order to minimize the number of evaluations, i.e. the training of models with different feature subsets.
}}
}}

Version vom 29. Mai 2019, 06:42 Uhr

Vortragende(r) Adrian Kruck
Vortragstyp Proposal
Betreuer(in) Jakob Bach
Termin Fr 7. Juni 2019
Vortragssprache
Vortragsmodus
Kurzfassung Wrapper feature selection can lead to highly accurate classifications. However, the computational costs for this are very high in general. Bayesian Optimization on the other hand has already proven to be very efficient in optimizing black box functions. This approach uses Bayesian Optimization in order to minimize the number of evaluations, i.e. the training of models with different feature subsets.