Neural-Based Outlier Detection in Data Streams: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Florian Pieper |email=florian@aipieper.de |vortragstyp=Proposal |betreuer=Edouard Fouché |termin=Institutsseminar/2018-01-19 |kurzfass…“)
 
Keine Bearbeitungszusammenfassung
 
Zeile 5: Zeile 5:
|betreuer=Edouard Fouché
|betreuer=Edouard Fouché
|termin=Institutsseminar/2018-01-19
|termin=Institutsseminar/2018-01-19
|kurzfassung=Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Structured Denoising Autoencoder” (SDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches.
|kurzfassung=Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Variational Denoising Autoencoder” (VDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches.
}}
}}

Aktuelle Version vom 17. Januar 2018, 11:41 Uhr

Vortragende(r) Florian Pieper
Vortragstyp Proposal
Betreuer(in) Edouard Fouché
Termin Fr 19. Januar 2018
Vortragssprache
Vortragsmodus
Kurzfassung Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Variational Denoising Autoencoder” (VDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches.