Institutsseminar/2021-04-30 Zusatztermin: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Termin |datum=2021/04/30 11:30 |raum=https://conf.dfn.de/webapp/conference/979160755 }}“)
 
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
{{Termin
{{Termin
|datum=2021/04/30 11:30
|datum=2021/04/30 11:30
|raum=https://conf.dfn.de/webapp/conference/979160755
|online=https://conf.dfn.de/webapp/conference/979160755
}}
}}

Aktuelle Version vom 14. Januar 2022, 13:16 Uhr

Termin (Alle Termine)
Datum Freitag, 30. April 2021
Uhrzeit 11:30 – 12:15 Uhr (Dauer: 45 min)
Ort
Webkonferenz https://conf.dfn.de/webapp/conference/979160755
Vorheriger Termin Do 29. April 2021
Nächster Termin Fr 30. April 2021

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Benjamin Acar
Titel Skalierung der SVDD: Sampling mit Fehlerschranken
Vortragstyp Masterarbeit
Betreuer(in) Adrian Englhardt
Vortragssprache
Vortragsmodus
Kurzfassung Ausreißerkennung beschäftigt sich damit, ungewöhnliche Beobachtungen in Daten zu finden. Weit verbreitet ist dabei der Einsatz von maschinellen Lernverfahren, wie beispielsweise des 1-Klassen Klassifikators „Support Vector Data Description“ (SVDD). Ein Problem des SVDD Klassifikators ist allerdings, dass die SVDD schlecht mit steigender Anzahl an Beobachtungen skaliert. Vorausgehende Arbeiten zeigen, dass während des Trainings einer SVDD nicht alle Objekte des Datensatzes benötigt werden. Es zeigt sich hierbei, dass vor allem jene, die sich am Rand der Verteilung befinden, von Interesse sind. Welche Objekte genau gewählt werden sollten und wie sich eine solche Reduktion letztlich auf die Qualität des Ergebnisses auswirkt, wird in den vorausgehenden Arbeiten bislang ausschließlich auf heuristischer Ebene behandelt. In dieser Arbeit entwickeln wir einen neuen Ansatz, um die SVDD schneller zu trainieren. Wir geben dabei konkrete, analytisch berechnete Fehlerschranken an und ermöglichen es somit dem Nutzer, den Kompromiss zwischen Laufzeit und Ergebnis-Qualität selbst zu adjustieren.
Neuen Vortrag erstellen

Hinweise