Development and evaluation of efficient kNN search of time series subsequences using the example of the Google Ngram data set: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Janek Bettinger |email=nobody@example.com |vortragstyp=Proposal |betreuer=Jens Willkomm |termin=Institutsseminar/2017-08-18 |kurzfassun…“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
|betreuer=Jens Willkomm | |betreuer=Jens Willkomm | ||
|termin=Institutsseminar/2017-08-18 | |termin=Institutsseminar/2017-08-18 | ||
|kurzfassung= | |kurzfassung=There are many data structures and indices that speed up kNN queries on time series. The existing indices are designed to work on the full time series only. In this thesis we develop a data structure that allows speeding up kNN queries in an arbitrary time range, i.e. for an arbitrary subsequence. | ||
}} | }} |
Version vom 15. August 2017, 13:26 Uhr
Vortragende(r) | Janek Bettinger | |
---|---|---|
Vortragstyp | Proposal | |
Betreuer(in) | Jens Willkomm | |
Termin | Fr 18. August 2017 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | There are many data structures and indices that speed up kNN queries on time series. The existing indices are designed to work on the full time series only. In this thesis we develop a data structure that allows speeding up kNN queries in an arbitrary time range, i.e. for an arbitrary subsequence. |