Ontologie-unterstützte Klassifikation von Software-Anforderungen: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Vitali Chaiko |email=fixed-term.Vitali.Chaiko@de.bosch.com |vortragstyp=Masterarbeit |betreuer=Sebastian Weigelt |termin=Institutssemin…“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
|betreuer=Sebastian Weigelt | |betreuer=Sebastian Weigelt | ||
|termin=Institutsseminar/2018-11-30 | |termin=Institutsseminar/2018-11-30 | ||
|kurzfassung= | |kurzfassung=Die Analyse der Lastenhefte für die Planung der Software bringt einen erheblichen manuellen Aufwand mit sich. Bei der Robert Bosch Engineering GmbH werden die Anforderungen aus den Lastenheften der Kunden auf eine V-Prozessmodell-Datenbank abgebildet. Diese Datenbank besteht aus sogenannten internen Anforderungen, die Richtlinien für Hardware-und Softwareentwicklung enthalten. Jede Kundenanforderung muss von den Mitarbeitern manuell auf eine oder mehrere interne Anforderungen abgebildet werden. In Rahmen dieser Arbeit wurde ein automatisiertes Verfahren entwickelt, welches den Mitarbeiter bei dem Abbildungsprozess unterstützen kann. Dafür wurde aus den Textdaten der Kundenanforderungen eine Ontologie automatisch generiert, welche Fachbegriffe und ihre Beziehungen enthält. Aus dieser Ontologie wurden Merkmale erzeugt, welche mit einem unüberwachten Verfahren des maschinellen Lernens, nämlich hiearchisches Clustering gruppiert wurden. Dadurch war es möglich eine neue Kundenanforderung in ein bestehendes Cluster einzuordnen und basierend auf die Kundenanforderungen in dem Cluster Vorschläge für die zutreffenden internen Anforderungen zu erhalten. Um die entstandene Ontologie zu evaluieren, wurde diese auf falsch extrahierte Konzepte und Beziehungen überprüft. 16% der Konzepte und 24% der Relationen erwiesen sich als falsch. Die Voraussage der Vorschläge erreichte einen F-Maß Wert von 62%, bei den Evaluationsmetriken Präzision@5 und Ausbeute@5. | ||
}} | }} |
Aktuelle Version vom 26. Oktober 2018, 13:08 Uhr
Vortragende(r) | Vitali Chaiko | |
---|---|---|
Vortragstyp | Masterarbeit | |
Betreuer(in) | Sebastian Weigelt | |
Termin | Fr 30. November 2018 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | Die Analyse der Lastenhefte für die Planung der Software bringt einen erheblichen manuellen Aufwand mit sich. Bei der Robert Bosch Engineering GmbH werden die Anforderungen aus den Lastenheften der Kunden auf eine V-Prozessmodell-Datenbank abgebildet. Diese Datenbank besteht aus sogenannten internen Anforderungen, die Richtlinien für Hardware-und Softwareentwicklung enthalten. Jede Kundenanforderung muss von den Mitarbeitern manuell auf eine oder mehrere interne Anforderungen abgebildet werden. In Rahmen dieser Arbeit wurde ein automatisiertes Verfahren entwickelt, welches den Mitarbeiter bei dem Abbildungsprozess unterstützen kann. Dafür wurde aus den Textdaten der Kundenanforderungen eine Ontologie automatisch generiert, welche Fachbegriffe und ihre Beziehungen enthält. Aus dieser Ontologie wurden Merkmale erzeugt, welche mit einem unüberwachten Verfahren des maschinellen Lernens, nämlich hiearchisches Clustering gruppiert wurden. Dadurch war es möglich eine neue Kundenanforderung in ein bestehendes Cluster einzuordnen und basierend auf die Kundenanforderungen in dem Cluster Vorschläge für die zutreffenden internen Anforderungen zu erhalten. Um die entstandene Ontologie zu evaluieren, wurde diese auf falsch extrahierte Konzepte und Beziehungen überprüft. 16% der Konzepte und 24% der Relationen erwiesen sich als falsch. Die Voraussage der Vorschläge erreichte einen F-Maß Wert von 62%, bei den Evaluationsmetriken Präzision@5 und Ausbeute@5. |