Neural-Based Outlier Detection in Data Streams: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Florian Pieper |email=florian@aipieper.de |vortragstyp=Proposal |betreuer=Edouard Fouché |termin=Institutsseminar/2018-01-19 |kurzfass…“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
|betreuer=Edouard Fouché | |betreuer=Edouard Fouché | ||
|termin=Institutsseminar/2018-01-19 | |termin=Institutsseminar/2018-01-19 | ||
|kurzfassung=Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and | |kurzfassung=Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Variational Denoising Autoencoder” (VDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches. | ||
}} | }} |
Aktuelle Version vom 17. Januar 2018, 11:41 Uhr
Vortragende(r) | Florian Pieper | |
---|---|---|
Vortragstyp | Proposal | |
Betreuer(in) | Edouard Fouché | |
Termin | Fr 19. Januar 2018 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | Outlier detection often needs to be done unsupervised with high dimensional data in data streams. “Deep structured energy-based models” (DSEBM) and “Variational Denoising Autoencoder” (VDA) are two promising approaches for outlier detection. They will be implemented and adapted for usage in data streams. Finally, their performance will be shown in experiments including the comparison with state of the art approaches. |