Institutsseminar/2021-06-11: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Termin |datum=2021/01/01 14:00:00 |raum=https://sdqweb.ipd.kit.edu/wiki/Institutsseminar/Microsoft Teams }}“) |
Keine Bearbeitungszusammenfassung |
||
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Termin | {{Termin | ||
|datum=2021/ | |datum=2021/06/11 11:30:00 | ||
| | |online=https://conf.dfn.de/webapp/conference/979160755 | ||
}} | }} |
Aktuelle Version vom 14. Januar 2022, 13:16 Uhr
Datum | Freitag, 11. Juni 2021 | |
---|---|---|
Uhrzeit | 11:30 – 12:00 Uhr (Dauer: 30 min) | |
Ort | ||
Webkonferenz | https://conf.dfn.de/webapp/conference/979160755 | |
Vorheriger Termin | Fr 21. Mai 2021 | |
Nächster Termin | Fr 18. Juni 2021 |
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r) | Philipp Weinmann |
---|---|
Titel | Tuning of Explainable ArtificialIntelligence (XAI) tools in the field of textanalysis |
Vortragstyp | Bachelorarbeit |
Betreuer(in) | Clemens Müssener |
Vortragssprache | |
Vortragsmodus | |
Kurzfassung | The goal of this bachelor thesis was to analyse classification results using a 2017 published method called shap. Explaining how an artificial neural network makes a decision is an interdisciplinary research subject combining computer science, math, psychology and philosophy. We analysed these explanations from a psychological standpoint and after presenting our findings we will propose a method to improve the interpretability of text explanations using text-hierarchies, without loosing much/any accuracy. Secondary, the goal was to test out a framework developed to analyse a multitude of explanation methods. This Framework will be presented next to our findings and how to use it to create your own analysis. This Bachelor thesis is addressed at people familiar with artificial neural networks and other machine learning methods. |
- Neuen Vortrag erstellen