Automatically detecting Performance Regressions: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
Zeile 5: Zeile 5:
|betreuer=Robert Heinrich
|betreuer=Robert Heinrich
|termin=Institutsseminar/2021-06-25
|termin=Institutsseminar/2021-06-25
|kurzfassung=TODO Kurzfassung
|kurzfassung=One of the most important aspects of software engineering is system performance. Common approaches to verify acceptable performance include running load tests on deployed software. However, complicated workflows and requirements like the necessity of deployments and extensive manual analysis of load test results cause tests to be performed very late in the development process, making feedback on potential performance regressions available much later after they were introduced.
 
With this thesis, we propose PeReDeS, an approach that integrates into the development cycle of modern software projects, and explicitly models an automated performance regression detection system that provides feedback quickly and reduces manual effort for setup and load test analysis. PeReDeS is embedded into pipelines for continuous integration, manages the load test execution and lifecycle, processes load test results and makes feedback available to the authoring developer via reports on the coding platform. We further propose a method for detecting deviations in performance on load test results, based on Welch's t-test. The method is adapted to suit the context of performance regression detection, and is integrated into the PeReDeS detection pipeline. We further implemented our approach and evaluated it with an user study and a data-driven study to evaluate the usability and accuracy of our method.
}}
}}

Aktuelle Version vom 7. Juni 2021, 13:17 Uhr

Vortragende(r) Lukas Bach
Vortragstyp Masterarbeit
Betreuer(in) Robert Heinrich
Termin Fr 25. Juni 2021
Vortragssprache
Vortragsmodus
Kurzfassung One of the most important aspects of software engineering is system performance. Common approaches to verify acceptable performance include running load tests on deployed software. However, complicated workflows and requirements like the necessity of deployments and extensive manual analysis of load test results cause tests to be performed very late in the development process, making feedback on potential performance regressions available much later after they were introduced.

With this thesis, we propose PeReDeS, an approach that integrates into the development cycle of modern software projects, and explicitly models an automated performance regression detection system that provides feedback quickly and reduces manual effort for setup and load test analysis. PeReDeS is embedded into pipelines for continuous integration, manages the load test execution and lifecycle, processes load test results and makes feedback available to the authoring developer via reports on the coding platform. We further propose a method for detecting deviations in performance on load test results, based on Welch's t-test. The method is adapted to suit the context of performance regression detection, and is integrated into the PeReDeS detection pipeline. We further implemented our approach and evaluated it with an user study and a data-driven study to evaluate the usability and accuracy of our method.